Feature Bagging for Author Attribution

Francois-Marie Giraud and Thierry Artieres

LIP6, Université Pierre et Marie Curie (UPMC), Paris, France
giraudf @poleia.lip6.1r, thierry.artieres @lip6.fr

Abstract The authorship attribution literature demonstrates the difficulty to de-
sign classifiers overcoming simple strategies such as linear classifiers operating
on a number, most frequent, of lexical features such as character trigrams. We
claim this comes, at least partially, from the difficulty to efficiently learn the con-
tribution of all features, which leads to either undertraining or overtraining of
classifiers. To overcome this difficulty we propose to use bagging techniques that
rely on learning classifiers on different random subset of features, then to com-
bine their decision by making them vote.

1 Introduction

A key issue in author attribution and verification lies in feature definition and selection,
which motivated many studies [14], [8]. One conclusion is that despite many efforts
to build smart features [6] very simple ones such as counts (or tfidf like features) of
words and/or of character n-grams are commonly used. Moreover feature selection is
performed using simple criterion such as choosing the most frequent words and charac-
ter ngrams. Finally, simple classifiers such as linear SVM have been shown to perform
well with above features and such simple systems appear to be difficult to outperform
[8]. Our work is an attempt to outperform such a simple, and efficient, strategy. It is
inspired from two key observations that have been made in the past.

First, it has been observed that learning rich models on few training data may yield a
form of undertraining [15] where some relevant features are not fully taken into account
by the model after training. This may happen when a number of features (not necessarily
many) are sufficient, alone, for perfect discrimination of the training samples. In that
case learning may focus on learning good weights for few of these relevant features
while neglecting remaining relevant features. Then if only the neglected discriminative
features occur in a test sample it will be misclassified. This has been observed in partic-
ular in the context of text processing with log linear models where one usually exploits
a huge number of features and where training samples are often linearly separable with
a small subset of the features.

Second, the work by [10] suggests that an author’s witting style is characterized
by a limited number of discriminative features and more importantly by the way the
classifier performance behaves (i.e. accuracy drops) when most important features (e.g.
having large weights after SVM learning) are iteratively removed.

We investigate here new methods that take into account the two above results to
design efficient classifiers for authorship attribution. They both rely on bagging ideas

where one combines the results of a number of classifiers that are learned on training
samples represented with a random subset of features.

We first draw a panorama of related works in section 2 then we provide in section 3
details on the datasets that we used in this paper in addition to the PAN 2012 challenge
datasets. Next we introduce our general idea and investigate the potential interest of
feature bagging in section 4 and we present our approach in section 5.

2 Related works

2.1 Features

Designing good features is a key issue for author identification, many features have been
investigated up to now. These may be grouped in a few categories; lexical features,
syntactic features, structural features, and contextual features. We briefly review all
these now.

Lexical features

— TF-IDF (term frequency - inverse document frequency): Tf-idf are standard fea-
tures used in text processing, information retrieval, that consist in counting words’
occurrences and weighting these counts by words’ document frequency to decrease
the influence of frequent and uninformative (with respect to the topic of the text)
words [11]. Using Tf-idf yields representing a document in a very high dimensional
space (there are one feature per word in the vocabulary). One may reduce the di-
mension of the feature space by selecting features using various measures such as
information gain [8].

— Word length: Statistics on word length has been used in e.g. [4]. It is a simple and
easy to compute feature but it has a low discriminative power.

— Sentence length.

— Richness of the vocabulary: This may be computed as the number of different words
used by an author. Again it is a simple and easy to compute feature but with a low
discriminative power.

— Word N-grams: These features are counts of the number of occurrences of N suc-
cessive words. One only considers unigrams (N=1), bigrams (N=2) and trigrams
(N=3). One can use simple counting or Tf-idf like scores [5]. Of course one cannot
consider all N-grams which are much too numerous, and one has to select a priori
the most useful ones.

— Character N-grams: These features are similar to previous ones but we are inter-
ested in tuples of characters not word [7]. Interestingly these features have been
shown to be efficient in a number of tasks on text data.

— CW: This is a short name for TF-IDF features computed for the 1 000 words with
highest information gain (after [8])

— CNG: This is a short name for TF-IDF features computed for the 1 000 trigrams
(of words) with highest information gain (after [8])

Syntactic features

— Linking words: Counting features (simple counts or TF-IDF like normalized counts)
for particular words: conjunction, preposition, pronoun, modal verbs, ...

— Part Of Speech (POS): Counting features (simple counts or TF-IDF like normalized
counts) on a tagged representation of the text; nouns, adjectives, verbs, singular,
plural, ... [12]

— POS N-grams: N-gram on POS tags [2]

Structural features

Font size [1]

Font color [1]

Number of images in the document [1]
Number of hyper links [1]

Contextual features

— Topic(s) of the document [1]
— Elongation and inflexion of Arabic words [1]

The difficulty to find good features for author identification lies in that author sig-
nature is embedded in many other information in the text that concern the topic, the
opinion, etc. As far as we can imagine from our own way to guess the author of a text
we focus on very particular construction, the use of particular words etc, in other words
we look at any unusual difference with a mean way of writing. Also it is more likely
that the most discriminative features for one author are very dependent on the author
and cannot be guessed a priori.

Then, one most often uses an eventually large number of features and let the classi-
fier decide which ones are useful or not for the targeted author identification task.

2.2 State of the art

Few classification methods have been investigated to operate on documents represen-
tated by a subset of features taken from the list above. Mainly two families of methods
have been used: methods coming from the information retrieval field (dot product or
any similarity measure on vectorial representations of documents), and methods from
the statistical machine learning field such as Support Vector Machines (SVM). Table 1
compares few results from the literature in terms of corpus, of classification method,
and of the features used to represent a document.

We want to comment a little on this table and on the studies from which these results
are taken.

First of all, the work in [16] on a French corpus focused on measuring the rele-
vance of using kernelized SVM instead of simpler linear ones. Although they showed
improved accuracy it is an isolated work. The literature shows on the contrary that lin-
ear SVM are popular and efficient in the author identification field. These models are
powerful enough when used with a large number of features, as it as been demonstrated

Language|# authors Context Features Classifier |Error rate| Ref
French 28 Literature (= 4 books/author) Character N-grams KSVM | 12,30 % |[16]
English 2 Email (240 / author) CW+CNG LSVM 21,80% | 8]
English 9 Literature (2 books/author) CW+CNG LSVM 13,70% | [8]
English 20 Blogs (= 400 posts/author) CW+CNG LSVM 14,30% | [8]
English | 8000 Blogs TF-IDF on words |Dot Product| 72,00% | [9]
English 5 Post in forums (20 messages/author) 87 Lex SVM 12,00% | [1]
English 5 Idem 301 (Lex, Syt, Str, Cnt) SVM 3,00% |[1]
Arabic 5 idem 79 Lex SVM 12,30% | [1]
Arabic 5 Idem 418 (Lex, Syt, Str, Cnt) SVM 5,20% | [1]

Table 1. Comparison of literature results. LSVM stands for Linear SVM and KSVM stands for
Kernel SVM (i.e. nonlinear). Lex, Syt, Str and Cnt stand respectively for Lexical features, syn-
tactic features, structural features and contextual features.

in many text classification tasks, they often allow perfect classification on the training
set.

[8] compared the efficiency of various feature sets with different classification meth-
ods and showed that best results were achieved with SVM working with CW and CNG
features on a few datasets. Besides, the studies of extremist posts (KKK for English and
Palestinian and Al-Aqsa Martyrs group for Arabic) concerned 5 authors only but the
study demonstrated the usefulness of structural and contextual features in this particu-
lar context [1]. A conclusion of studies on the discriminative power of various features
vary and it appears difficult to determine definitely a set of discriminative features.

At the end, few works aimed at designing new classification methods dedicated to
author identification. Linear SVMs appear to be a good compromise, and the key issue
is rather to determine which are the moste useful features, this appears as the main
question to get good results.

3 Datasets and experimental settings

3.1 Datasets

We report experimental results gained on the PAN 2012 challenge datasets and on two
additional datasets on which we have been able to perform numerous experiments in
order to characterize the behaviour of our method. We provide here details on the two
additional datasets, details one the PAN 2012 challenge may be found on the challenge
website.

The first additional dataset that we use is an english literature corpus used in some
previous publications ([8], [10]). It is very similar to the corpus used in the PAN 2012
challenge: There are 9 authors and 2 complete books per author. There are an average of
100 thousands words by book and every book was divided manually in about a hundred
documents, keeping integrity of chapters and of text sections. A large majority of the
documents are about 500 to 3000 words length.

The second additional corpus is a subset of a corpus of blogs with about 18 000
authors [9]. We worked on a subset of this corpus considering only the 60 main authors
(bloggers), i.e. those who post frequently (at least 20 posts) posts that are longer than
100 words.

3.2 Experimental settings

In all reported experiments we used linear support vector machines (SVMs) as classi-
fiers since they have been shown to provide state of the art results in many text process-
ing and classification tasks and in particular for author authentification.

We used the LibSVM library [3] where a multiclass classifier for a NV class clas-
sification problem is implemented through the learning of N x (N — 1)/2 one-to-one
binary SVMs. All classifiers are learned with a standard L2 regularization term (to avoid
overfitting) whose weight is set on the validation dataset.

Note also that we exploited the probabilistic variant of SVMs as implemented by
LibSVM. When the outputs of multiple SVMs are to be compared in order to take a
decision (see section 6) we naturally take the decision corresponding to the SVM with
the biggest output.

4 Unexploited features and classifier undertraining

We hypothesize that undertraining as described in [15] often occurs in authorship at-
tribution tasks. Actually we observed on many datasets that SVMs working on many
lexical features (word or character trigrams counts or tf-idf) easily reach 100% accu-
racy on the training set while performance on the test set may be significantly below,
which is symptomatic of an overtraining problem. Yet, as suggested by [15] it may
be more accurately understood as an undertraining problem when considering linear
models exploiting a large number of features.

Indeed when the classifier is rich enough (e.g. a linear classifier exploiting a num-
ber of discriminative features) it may happen that some relevant features are not fully
taken into account by the learned model. This may happen when a number of features
(not necessarily many) are sufficient, alone, for perfect discrimination of the training
samples. Then training may focus on exploiting some of the relevant features allowing
perfect classification on the training set, while ignoring some other relevant features. In
such a case, if a test sample includes neglected discriminative features only it will be
misclassified. It is a form of undertraining that may occur when training samples are
linearly separable with a small subset of the features, e.g. when having many features
and/or few training data.

Figure 1 reports preliminary experimental results that yield thinking there is actu-
ally some kind of undertraining in SVMs learned on authorship attribution tasks with
many simple (lexical) features. It plots the accuracy of a linear SVM (Support Vector
Machine) exploiting a limited number of features, X, ranging from 10 to 350 chosen
from a set of 2 500 features (2 500 most frequent character trigrams) as a function of X.
Plots are for the training dataset (top) and for the test set (bottom). Both plots provide
two curves corresponding to choosing the X features at random or by selecting the X

120

100
) //

60

ACCURACY

<+SVM on X most Frequent words
40 -=SVM on X random features from 2500 words
baseline : SVM on 2500 most frequents words

-~SVM on 2500 Words minus X most frequent ones

o] 50 100 150 200 250 300 350

Number of X Features

90

80

7 +SVM on X most Frequent words

% =SVM on X random features from 2500 words

50 .
baseline : SVYM on 2500 most frequents words

40

ACCURACY

-SVM on 2500 Words minus X most frequent ones
30
20 //_A

[o] 50 100 150 200 250 300 350

Number of X Features

Figure 1. Accuracy (on a 9 authors dataset [8]) on the training set (top) and on the test set (bottom)
of linear SVMs when selecting a subset of X features at random or by selecting the X most
frequent features from a set of 2 500 features. Curves represent accuracy plotted as a function of
X for X € [10,300]. Accuracy of a SVM using all 2 500 features and of a SVM exploiting all 2
500 features minus the X most frequent features are given for comparison.

most frequent features, a line which corresponds to a linear SVM exploiting all 2 500
features, and an additional curve for the accuracy of a SVM using all 2 500 features
minus the X most frequent features.

These figures put in evidence some interesting facts. As may be seen the perfor-
mance of classifiers exploiting only few features is very high on the training set when
using the most frequent features, quickly reaching 100% perfect classification, (which
is also true when using all features) while it reaches a plateau on the test set at about
80% accuracy. There is then a strong gap between the performance on the training set
and on the test set which show an overtraining problem. Also the accuracy of a SVM ex-
ploiting all 2 500 features minus the most frequent ones is very high both on the training
set and on the test set, which shows these features contain discriminative information
too.

Indeed the figures also show that using few random features also allow to discrim-
inate between authors up to a certain extent, which means all features (including less
frequent ones) contain some discriminative information. It is likely that the learning of
a SVM will focus on exploiting most frequent features so that at the end one may ex-
pect that SVMs will not necessarily fully exploit all discriminative features since only
few of them (most frequent) already allow reaching 100% accuracy on the training set.
As a consequence there exist a number of discriminative features that are neglected by
during learning and that might improve generalization.

S Bagging features for improved author authentification

Based on the discussion above we aim at designing approaches able to fully exploit the
potential of all available features. We investigated methods relying on bagging features,
i.e. learning many classifiers on different subsets of the features then combining their
predictions.

5.1 Principle

Many methods have been proposed for combining classifiers such as co-training, boost-
ing, bagging, a number of which have been designed or adapted for working with clas-
sifier exploiting different subsets of features [17], [15]. In particular, feature bagging
has been investigated by a few researchers in the past [13], [15]. Viola & jones [17]
used boosting with extremely weak classifiers (learned on a single feature each) every
iteration. [13] also used boosting with an adaptation of AdaBoost to feature weighting
instead of samples weighting as in AdaBoost.

In this preliminary study we decided to investigate a standard bagging combination
where an eventually large number of base classifiers that are learned on random subsets
of the features (with eventual overlap) and that are combined at test time thourgh a vot-
ing procedure. In practice we investigated using a majority vote decision process with
a number of SVM classifier trained on many (hundreds to thousands) random subsets
of few (tens to hundreds) features. SVM classifier are learned with libsvm toolbox(see
section 3).

5.2 Experimental results

Preliminary experiments Preliminary results were obtained on the 60 bloggers cor-
pus.

All the results presented in this section have been obtained on a single learning/validation/test
split to limit computational complexity. All the models are trained on the learning set
and the validation test is used to determine the optimal value of the SVM regularization
parameter.

First we investigate the influence of the number of random features K exploited by
the base classifiers and of the number of base classifiers M. Figure shows the evolution
ot the system’s accuracy as a function of the number of base models. There are few
curves corresponding to a different number of random features used by a base classifier.
The features used are chosen from a set of 3 000 most frequent character trigrams. As
may be seen the value of K influences the performance of the overall approach and it
seems better to use a small value here K, probably yielding more variability between
all base classifiers. Besides, it looks like the more there are base classifiers the higher
the accuracy, in particular when designing base classifiers working on a small number
of random features.

| 100 features
/ 200 features
L 600 featur‘es

05 L L L L
0 100 200 300 400 500 600 700

Figure 2. Performance of the bagging approach as a function of the number of models. The three
curves stand for the number of random features that base classifiers exploit.

Table 2 provides some interesting statistics on the base classifiers, the mean accu-
racy, the minimum accuracy (among all base classifiers) and the maximum accuracy
on the training, the validation and the test datasets. It shows in particular that the more
features the base classifier exploit the higher is the average accuracy, but it shows also
that a single base classifier is not a good performer alone.

Table 3 compares the performance of the bagging feature approach with that of a
single SVM working witl all features. One may see here that whatever the number of
random features used by base classifiers, the bagging approach systematically outper-
forms a SVM exploiting all the features. This justifies a posteriori our discussion on the
undertraining phenomenon of classifiers in the context of author identification.

These results show a significative improvement of the bagging feature approach
over a single SVM classifier exploiting all the features.

Table 2. Statistics on base classifiers.

Minimum Mean Maximum

features|Train ~ Valid Test|Train Valid Test|Train Valid Test
100 |99.8 332 322/99.8 45.6 42.7| 100 56.1 533
225 99.8 50 46.1199.9 60.5 55.8| 100 694 644
600 {99.8 55 48.9199.9 65.5 60.1| 100 755 67.8

Table 3. Performance of the Bagging feature approach.

Model Train|Valid| Test

Bagging (100 features) 99.982.2|79.4
Bagging (225 features) 100 | 83.9|76.7
Bagging (600 features) 100 |83.9 (76.1
Single SVM with all 3000 features| 100 | 79.4 |71.6

PAN’12 challenge For the PAN challenge dataset, we learned models on a number of
splits of the provided training corpus into pairs of learning/validation datasets. For each
of these S training/validation splits, we learned M models based on K randomly selected
features from the initial set of features (word or caracter trigram counts) (see Table 4).
We finally take decision over (S x M) models learned each with K random selected
features in the T initial features. For closed problem, we simply used a majoritary vote
to design prediction on test data. For open problems we use same models and vote
method but fixed a threshold on each author based on validation results below wich we
consider that none of the condidates is the real author. The table below summarize by
task ours submitted methods. In the table the initial set of features is described by the
feature type (i.e word-count or character-n-gram count) and by the number T of most
frequent features keeped from the training set. Accuracy of our approach for a variety
of hyperparameters (M, K, etc) values are given in the table.

6 Two stage approach

To go further we built on the work of [10] who suggested that an author’s witting style
is characterized by a limited number of discriminative features and more importantly
by the way the classifier performance behaves (i.e. drops) when most important features
(having large weights after learning) are iteratively removed. We designed a method that
is inspired by this work and exploits weak SVM classifiers learned on random subsets
of features.

Table 4. Accuracy of the feature bagging approach on PAN 2012 datasets.

TASK|Run Name|K (# splits)|N (# Models / split)|# Models overal| Type of feature|# Random features|Open/Closed task|Accurracy
A Lip6 1 8 100 800 WORDS-1500 200 open 100
B Lip6 1 8 100 800 WORDS-1500 200 closed 70
A Lip6 2 8 1 8 3CHAR-3500 3500 open 100
B Lip6 2 8 1 8 3CHAR-3500 3500 closed 60
A Lip6 3 8 100 800 WORDS-1500 300 open 100
B Lip6 3 8 100 800 WORDS-1500 300 closed 70
C Lip6 1 10 100 1000 WORDS-1500 400 open 100
D Lip6 1 10 100 1000 WORDS-1500 400 closed 41.18
C Lip6 2 10 300 3000 3CHAR-3500 1000 open 75
D Lip6 2 10 300 3000 3CHAR-3500 1000 closed 52.94
C Lip6 3 10 300 3000 3CHAR-3500 1250 open 62.5
D Lip6 3 10 300 3000 3CHAR-3500 1250 closed 35.29
I Lip6 1 12 1 12 WORDS-1500 1500 open 85.71
J Lip6 1 12 1 12 WORDS-1500 1500 closed 81.25
I Lip6 2 12 1 12 WORDS-2000 2000 open 78.57
J Lip6 2 12 1 12 'WORDS-2000 2000 closed 68.75
1 Lip6 3 12 1 12 WORDS-2500 2500 open 78.57
J Lip6 3 12 1 12 WORDS-2500 2500 closed 75

We explain now the principle of this approach. Consider an author classification
problem with N authors (classes) and where documents are represented by p-dimensional
feature vectors. The system we propose is a two stage system.

In a first stage we learn N linear multiclass SVMs exploiting random subsets (of
size X) of the p original features as before in section 5. We note .S; C [1, d] the set of
indices of features used by the i SVM and SV M, the i*" classifier. These classifiers
are learned to affect a document to one of the N authors.

Then we use the classifiers of the first stage to build new vectors (that we call pro-
files) that will be processed in a second stage by another classifier. We start by de-
scribing how the first stage is used to build a new training dataset which we call the
second stage dataset. For any author a € [1, N] and for any document d, we build a
new p-dimensional feature vector (a profile) whose j* component is the proportion of
classifiers (among the N classifiers that exploit feature j) that predict author a. More
formally the profile for a particular pair (document,author) which we note u(d, a) is a
vector whose components are defined as:

uj(d,a) = % D 6(j € Si) x 6(SVM;(d) == a) (1)
i=1:K

where SV M;(d) stands for the output (a class number in [1..N]) of the ¥ SVM for
document d, where §(P) equals one if predicate P is true and 0 otherwise, and where
Z(j) is a normalization factor Z =)., . 0(j € S;)x. At the end u;(d, a) stands
for the percentage of classifiers, among those that exploit the j** feature, that predict
author a.

We then use such profiles as an input to a second stage classification system. Those
profiles may be sorted (from the highest value to the lowest) so that the numbering of
the components are lost. Figure 3 shows such profiles for the 60 authors of the blog
dataset. As suggested by [10] the rate the performance decreases may be relevant of a
particular author.

Figure 3. Example of profile vectors on the blog dataset (one curve per author).

At this point, each document in the train and the validation corpus correspond to
N profiles, one for every author. Based on this new dataset we learn a new classifier
to discriminate between positive examples (profiles that are built for the actual author)
and negative examples. The classifier is a prototype based method where one author (ine
class) is represented as the mean vector profile of this class computed on the training set.
At test time one computes a similarity between a test profile and the reference profile
for every class. We investigated euclidean distance and correlation similarity. Table

When classifying a test document we first run the set of KX SVM classifiers of the
first stage, tehn we build N p-dimensional profiles as above. We take the final decision
based on the second stage classifier that is run on these IV second stage feature vectors
(looking for the highest similatity, lowest distance).

Table 5 shows that this second approach also significantly outperforms the single
SVM approach and it allows reaching similar results as the standard bagging approach
while working on a very different representation of the documents. This let some hope
that the two methods could be advantageously combined which we did not investigate
by lack of time.

Table 5. Accuracy of the two stage approach.

Similarity measure| Samples |Accuracy Valid|Accuracy Test

Euclidean distance| Raw vectors 82.2 79.4
Correlation Raw Profiles 80.2 78.9
Correlation Sorted profiles 82.2 79.4

7 Conclusion

We presented an experimental investigation that show that one of the most competitive
method for author identification may suffer from undertraining. We built on this idea to
propose new approaches for author identification that rely on the idea of bagging fea-
tures. The first method is a rather traditional method for bagging features and achieved
interesting results on the PAN 2012 challenge, reaching the third place among eleven

participants on closed identification tasks. The second method extends the bagging fea-
ture strategy and provides preliminary promising results.

8

Aknowledgment

Special thanks to Moshe Koppel of Bar-Ilan Univeristy in Israel for filling us with
corpus. This work has been done in the context of the SAIMSI project (reference ANR-
09-CSOSG-SAIMSI) funded by the French Research Agency (ANR).

References

1.

2.

TN

10.

11.

12.

13.

14.

15.

17.

Abbasi, A., Chen, H.: Applying authorship analysis to extremist-group web forum
messages. IEEE Intelligent Systems 20(5), 67-75 (Sep 2005)

Argamon-Engelson, S., Koppel, M., Avneri, G.: Style-based text categorization: What
newspaper am I reading? In: Proceedings of the AAAI Workshop on Text Categorization.
pp- 1-4 (1998)

. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions

on Intelligent Systems and Technology 2, 27:1-27:27 (2011), software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm

. FUCKS, W.: On mathematical analysis of style. Biometrika 39(1-2), 122-129 (1952)
. Hoover, D.L.: Frequent Word Sequences and Statistical Stylistics. Literary and Linguistic

Computing 17, 157-180 (2002)

. Kim, S., Kim, H., Weninger, T., Han, J., Kim, H.D.: Authorship classification: a

discriminative syntactic tree mining approach. In: SIGIR (2011)

. KJELL, B.: Authorship determination using letter pair frequency features with neural

network classifiers. Literary and Linguistic Computing 9(2), 119-124 (1994)

. Koppel, M., Schler, J., Argamon, S.: Computational methods in authorship attribution.

Journal of the American Society for Information Science and Technology 60(1) (2009)

. Koppel, M., Schler, J., Argamon, S., Messeri, E.: Authorship attribution with thousands of

candidate authors. In: Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval. pp. 659—-660. SIGIR *06, ACM, New
York, NY, USA (2006)

Koppel, M., Schler, J., Bonchek-Dokow, E.: Measuring differentiability: unmasking
pseudonymous authors. Journal of Machine Learning Research (2007)

Martindale, C., McKenzie, D.: On the utility of content analysis in author attribution:
It;igt;the federalistlt;/igt;. Computers and the Humanities 29, 259-270 (1995),
10.1007/BF01830395

MEALAND, D.L.: Correspondence analysis of luke. Literary and Linguistic Computing
10(3), 171-182 (1995)

O’Sullivan, J., Langford, J., Caruana, R., Blum, A.: Featureboost: A meta learning
algorithm that improves model robustness. In: In Proceedings of the Seventeenth
International Conference on Machine Learning. pp. 703—710 (2000)

Stamatatos, E.: A survey of modern authorship attribution methods. Journal of the
American Society for Information Science and Technology 60(3), 538-556 (2009)

Sutton, C., Sindelar, M., Mccallum, A.: Feature bagging: Preventing weight undertraining
in structured discriminative learning. Tech. rep., CIIR (2005)

. Teytaud, O., Jalam, R.: Kernel-based text-categorization. In: In International Joint

Conference on Neural Networks (IJCNNS2001. pp. 1-0 (2000)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:
Computer Vision and Pattern Recognition, 2001

