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Abstract  
This paper presents the different solutions proposed for the Profiling Hate Speech Spreaders 

on Twitter task at PAN 2021, which consists of classifying each author as hater or no hater 

from a set of tweets, for Spanish and English languages. The given approaches are different 

for each language. For Spanish, an ensemble of LSTM and a Logistic Regression model trained 

with stylistic features is used. For English, an ensemble of SVC and Random Forest model, 

also with stylistic features, is proposed. Our solutions achieved an accuracy of 83% in Spanish 

and 58% in English, resulting in an overall accuracy of 70.5% in the task ranking.  
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1. Introduction 

Automatic hate speech detection on social media has become a topic of growing interest in the 

artificial intelligence community and particularly, in the area of Natural Language Processing [1]. 

Although different definitions can be found in the literature, hate speech is commonly described as 

language that attacks or disparages a person or a group based on specific characteristics that include, 

among others, physical appearance, nationality, religion or sexual orientation [2]. Given the huge 

amount of user-generated content and the rapid dissemination of information these days, being able to 

identify not isolated hate speech comments but hate speech spreaders is a key first step in trying to 

prevent hate speech from spreading in online communications.  

This paper describes the proposed models for the PAN 2021 Profiling Hate Speech Spreaders on 

Twitter [3], which is one of the three proposed tasks at CLEF 2021 [4] deployed on TIRA platform [5]. 

The dataset provided in the shared task consisted of a balanced set of users that have shared some hate 

speech tweets, labeled as haters and non-haters otherwise. It was provided in two languages, namely 

Spanish and English. For each of them, the dataset it included 200 different users and 200 tweets per 

user. As recommended by the shared task, we presented a different solution for each language. For the 

Spanish dataset, an ensemble of LSTM and a logistic regression model trained with stylistic features is 

proposed, which achieved 83% of accuracy in the provided test set. For the English dataset, an ensemble 

of Support Vector Classification and Random Forest both based on stylistic features is presented, which 

achieved 58% of accuracy in the provided test set. 

In Section 2 we present some related work on profiling hate speech spreaders. In Section 3 we 

describe the two approaches proposed, including the description of the features used and the 
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implemented machine learning models. In Section 4 we present the experimental results achieved for 

both languages independently. Finally, in Section 5, we present the conclusions and future work. 

2. Related work 

Generic text mining features are commonly used for hate speech detection [2]. These include several 

types of characteristics, such as those obtained from dictionaries, bag-of-words (BOW), N-grams, TF-

IDF, Part-of-speech (POS) or word embeddings. There are also specific features for hate speech 

detection, but in some cases, they require additional user information (like gender, age or geographic 

localization), or they focus on specific stereotypes. Regarding the algorithms used for hate speech 

detection, which is typically considered as a binary classification (hate vs not-hate), the most common 

are Support Vector Machines, followed by Random Forest, Decision Trees and Logistic Regression [2]. 

More recent approaches use deep learning techniques, such as attention-based neural networks [6] or 

an ensemble of neural networks [7], obtaining good performance results.    

In addition, the aim of this shared task is not only to detect hateful content, but profile hate speech 

spreaders. In this sense, common features used in the field of author profiling are stylistic features (such 

as frequency of punctuation marks, capital letters, word frequency), content features (such as BOW, 

TF-IDF or N-grams), POS tags, readability features or emotional features (emotion words and 

emoticons) [8,9]. Other message features such as retweets, hashtags, URLs and mentions are also 

considered in this area and, recently, the word and character embeddings are also applied. Regarding 

the algorithms used for author profiling, the traditional machine learning models are widely used, but 

in the last few years, deep learning approaches such as Recurrent Neural Networks (RNN) and 

Convolutional Neural Networks (CNN) have gained attention [10]. 

 

3. Methodology 

The proposed models aim to discriminate hate speech spreaders from those who have never shared 

hate speech content on Twitter. They were built as an ensemble of classifiers, using two different 

approaches. On the one hand, stylistic features were extracted for each tweet and statistics per author 

were obtained from them in order to apply classic machine learning algorithms. On the other hand, a 

neural network with word embeddings was trained with the groups of tweets. Since no development set 

was provided in the shared task, it was decided to randomly split the training set into two partitions: 

90% of the users for the development set and 10% for the test set, each containing 180 and 20 users 

respectively. These data partitions were used to evaluate the models using the official metric for this 

task, the accuracy, and to compare their performance on the same unseen data. The best models were 

then applied to the test data provided in the shared task, whose results were used to rank the performance 

of our system. The following sub-sections describe the two different approaches. 

3.1. Word embeddings and LSTM 

In this approach, an aggregation of everyone's set of tweets was first performed in order to obtain 

one text per subject. A preprocessing step was also applied in order to remove accents, capital letters, 

double spaces and stop-words. Then, the development set was divided into two partitions: 60% of the 

users for the training set and 40% of the users for the validation set, with 108 and 72 users respectively.  

First, a tokenizer with a selected number of maximum words was adjusted to the training set, so that 

only the top words remained in the vocabulary, and the less used words were eliminated. The next step 

was to convert texts into sequences, meaning that each word of the tweet was translated into the index 

of that word in the vocabulary. The last step was to pad the sequences, so that they all had the same 

length regardless of the number of words they originally had. Specifically, a maximum sequence length 

of 1000 words was set, with the sequences being the collection of tweets from one subject, so that none 

of them would be trimmed. The training of the word embeddings with the configured dimension is 

performed simultaneously with the rest of the neural network parameters. 



Once the above steps have been completed, the training of the neural network can be performed, 

setting the maximum number of words to be considered in the tokenizer and the word embedding 

dimensions. The neural network architecture is based on an LSTM, as shown in Figure 1, and it was 

trained using the categorial cross-entropy as the loss function.  

 

 
Figure 1: Neural network architecture based on word embeddings and LSTM. 

 

3.2. Stylistic features and classical machine learning algorithms 

To obtain the model that discriminates between a hater and a no hater, a set of stylistic features was 

calculated for each tweet independently. These characteristics have been divided into three groups: 

pattern-related, word-related and emoji-related features. The first group include, among others, the 

number of occurrences of certain patterns in the texts (such as hashtags, URLs or retweets) and the 

number of certain characters (such as symbols or letters). Word-related features include counts of 

particular words, such as nouns, verbs or adjectives. Both feature sets were calculated using regular 

expressions with the RegEx Python module [11] and the English model “en_core_web_sm” for de 

English dataset and “es_core_news_sm” for the Spanish dataset from spaCy Python library [12] for 

lemmatization and identification of word categories. Regarding the emojis, they were analyzed and 

grouped following different categories from the advertools Python library [13]. The rate between the 

unique emojis and the total emojis in the tweet was also included. The total set of 37 characteristics, 

referred to here as handcrafted features, is shown in Table 1. 

 

 

 

 

 



Table 1 

Stylistic features extracted per tweet, divided into three groups: pattern, word and emoji related features. 

 

Pattern-related features  

• Retweets 

• Mentioned users 

• URLs 

• Hashtags 

• Laugh expressions 

• Symbols 

• Arousal symbols [¿?¡!] 

• Capital letters 

• Total letters 

Word-related features  

• Stopwords 

• Adjectives 

• Nouns 

• Proper nouns 

• Verbs 

• Repeated words 

• Total words 

• Letters/words 

Emojis-related features  

• Ratio unique / total emojis 

• Face-affection 

• Face-concerned 

• Face-costume 

• Face-glasses 

• Face-hand 

• Face-negative  

• Face-neutral-skeptical 

• Face-sleepy 

• Face-smiling 

• Face-tongue 

• Face-unwell 

• Body-parts 

• Emotion 

• Gender 

• Hand-fingers-closed  

• Hand-fingers-partial 

• Hand-single-finger 

• Hands  

• Person-gesture 

 
Once the stylistic features were calculated for each tweet, four statistics (mean, standard deviation, 

minimum and maximum) were computed for all the tweets of the same user. As result, a vector of 148 

stylistic features was obtained for each author. Features were then standardized by subtracting the mean 

and dividing by the standard deviation for the development set, and these values were then applied to 

the test. 

As there were only 200 different users in the dataset, a feature reduction method was applied to 

reduce the number of characteristics. First, the Pearson's correlation matrix was calculated, and high-

correlated features (p > 0.95) were eliminated. Then, a filter method was implemented to avoid 

overfitting. It consisted of calculating the area under the ROC Curve for each characteristic and 

removing those with values close to 0.5, which mean that they were not relevant for the classification 

task. With this method 50% of the features were eliminated, remaining the features with more 

information. Finally, sequential backward selection was applied to determine the optimal combination 

of N features for classification in the range 10 to a threshold (T) of the maximum allowed 

characteristics, which could be 15, 20 or 30 items, respectively. This selection method iteratively 

computes a criterion function for a given machine learning classification algorithm using a cross-

validation strategy. In each iteration, one feature is removed at a time to create n-1 subsets of features. 

For each of them, a machine learning model is trained, and the criterion function for cross-validation is 

recalculated. Based on these results, the feature associated with the best performing model is removed, 

since removing it yielded the best result and therefore, is the one that helps the least in the classification.  

This process, called feature ablation, is repeated until 10 features are left. In this work, we used accuracy 

as the criterion function and the stratified K fold cross-validation with five folds as cross-validation 

strategy. 

Regarding the machine learning classification algorithms, the following were chosen, Support 

Vector Classification (SVC), K-Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest 

(RF) and Decision Tree (DT). Each of these algorithms was applied sequentially in both sequential 

backward selection with default hyperparameters and hyperparameter tuning. In the latter step, the same 

cross-validation strategy was used as in the feature selection method, for the different hyperparameter 



combinations shown in Table 2. Finally, the test set was transformed by keeping only the selected 

features and applying the standardization with the training set statistics. The machine learning model 

was then applied with the chosen hyperparameters and the predictions were obtained. 

 

Table 2 

Hyperparameter sets for the implemented machine learning models, with the default values used in 

cross-validation indicated with “default” in brackets. 

 

Model Hyperparameters 

SVC Kernel: Radial Basis Function (default), Sigmoid 

Gamma: 0.001, 0.01, 0.1, 1, 'auto', 'scale' (default) 

C: 1 (default), 10, 100, 1000 

KNN Number of neighbours: 1, 3, 5 (default), 7 

Weights: Uniform (default), Distance 

Metric: Euclidean, Manhattan, Minkowski (default) 

LR Penalty: l2 

C: 1 (default), 20 logarithmically scaled values between -4 and 4 

Solver: liblinear, lbfgs (default) 

RF Number of trees: 100 (default), 200, 300, 400, 500 

Maximum depth of the tree: 2, 4, 6, 8, 10, unlimited (default) 

Number of features considered for the best split: sqrt(N) (default), log2(N), where N is 

the total number of features 

DT Maximum depth of the tree: 2, 4, 6, 8, 10, unlimited (default) 

Function to measure the quality of a split: entropy, Gini impurity (default). 

4. Experimental results 

The following sections summarize the results obtained with the different datasets, in Spanish and 

English, and detail the final models chosen for each of them. 

4.1. Spanish dataset 

As mentioned above, two approaches were evaluated for the dataset. Firstly, the word embedding 

described in Section 3.1 was trained using different combinations of parameters to obtain the best 

configuration. Table 3 shows the accuracy results obtained in the test set by modifying the maximum 

number of dictionary words to be tokenized between 1000, 2000, 3000 and 4000, keeping the 

embedding dimensions constant. 

 

Table 3 

Neural network results varying the maximum number of vocabulary words for the Spanish dataset. 

 

Max number words Embedding dimension Test-accuracy 

1000 10 0.65 

2000 10 0.70 

3000 10 0.80 

4000 10 0.70 

 

Based on the results of Table 3, the maximum number of words was set at 3000. Then, the 

embedding dimensions were modified between 5, 10 and 15. The results are shown on Table 4. 

 

Table 4 

Neural network results varying the word embedding dimensions for the Spanish dataset. 

 



 

Max number words Embedding dimension Test-accuracy 

3000 5 0.55 

3000 10 0.80 

3000 15 0.70 

 

The experimentation conducted showed that the best performing network configuration consisted of 

a maximum of 3000 words considered in the tokenizer and a 10-dimensional embedding, achieving 

80% accuracy.  

 

Despite the good results, the methodology described in Section 3.2 was used to obtain a new hater 

versus non-hater classifier based on stylistic features. The results are shown in Table 5, where the 

machine learning model and the number of features used by each model (N-features) are indicated. It 

also includes the following evaluation metrics: the cross-validation accuracy (CV-acc), the test accuracy 

(Test-acc), the true positive rate and the true negative rate in the test set (Test-TPR and Test-TNR, 

respectively). Only the models with the feature selection and hyperparameters that provided the best 

results have been included, rather than all combinations tested. 

 

Table 5 

Results of the classical machine learning models for the Spanish dataset. 

 

Model N-features CV-accuracy Test-acc Test-TPR Test-TNR 

SVC 15 0.80 ± 0.09 0.70 0.90 0.50 

KNN 12 0.80 ± 0.05 0.70 0.80 0.60 

LR 18 0.80 ± 0.07 0.80 0.90 0.70 

RF 14 0.79 ± 0.06 0.75 0.90 0.60 

DT 15 0.71 ± 0.05 0.70 0.70 0.70 

 

The highest accuracy was 80%, as in word embedding. This score was achieved with the logistic 

regression, both in the development test and in the test set, using the features listed in Table 6. 

 

Table 6 

Selected features in the LR model for the Spanish dataset. 

 

Pattern-related features  

• Mean mentioned users 

• Std mentioned users 

• Mean URLs 

• Mean hashtags 

• Std hashtags 

• Mean arousal symbols 

• Mean symbols 

• Mean capital letters 

Word-related features  

• Std nouns 

• Max verbs 

• Std total letters 

• Mean letters/words 

• Std letters/words 

Emojis-related features  

• Mean emoji face-affection 

• Std emoji face-affection 

• Mean emoji face-concerned 

• Std emoji face-concerned 

• Mean emoji face-smiling  

 

As a last step, since both approaches achieved high accuracies, an ensemble of the two best models 

was built. The logistic regression and the word embedding scores were combined using the sum rule 

with an alpha weight associated with the score of each approach. It is shown in the equation (1), where 



𝑠𝑐𝑐 is the combined score, 𝑠𝑐𝑙𝑟 is the score from the logistic regression, 𝑠𝑐𝑤𝑒 is the score from the word 

embedding and alpha is the weight in the range [0,1].  

 

𝑠𝑐𝑐  =  𝛼 · 𝑠𝑐𝑤𝑒 + (1 −  𝛼) · 𝑠𝑐𝑙𝑟 

 

(1) 

To find the best alpha estimate, values between 0 and 1 were tested in increments of 0.05 for the 

development set. The alpha value that achieved the highest accuracy was 0.85, which reached 86% 

accuracy on the development set.    

The ensemble of the regression model and word embedding was finally applied to the test set 

provided in the task, achieving 83% accuracy. 

4.2. English dataset 

As with the Spanish tweets, word embeddings were first tested to solve the classification task for the 

English dataset. The neural network was adapted to the dataset by modifying the maximum number 

words to be considered in the tokenizer between 1000, 2000, 3000 and 4000, keeping the embedding 

dimensions constant. The results are shown in Table 7.  

 

Table 7 

Neural network results varying the maximum number of vocabulary words for the English dataset. 

 

Max number words Embedding dimension Test-accuracy 

1000 10 0.45 

2000 10 0.50 

3000 10 0.40 

4000 10 0.55 

 

Although the results in Table 7 were not as expected, additional experiments were carried out by 

varying the embedding dimensions for the best of the configuration found. The results are shown in 

Table 8. 

 

Table 8 

Neural network results varying the word embedding dimensions for the English dataset. 

 

Max number words Embedding dimension Test-accuracy 

4000 5 0.45 

4000 10 0.55 

4000 15 0.50 

 

The variation of the embedding dimensions also did not provide better results. Therefore, it was 

decided not to continue in this direction and to focus on the second approach based on classical machine 

learning classifiers.  

 

Following the pipeline described in Section 3.2, the results showed in Table 9 were achieved. The 

table shows the machine learning model and the number of features used by each model (N-features). 

It also includes the following evaluation metrics: the cross-validation accuracy (CV-acc), the test 

accuracy (Test-acc), the true positive rate and the true negative rate in the test set (Test-TPR and Test-

TNR, respectively).  

 

 

 



Table 9 

Results of the classical machine learning models for the English dataset. 

 

Model N-features CV-accuracy Test-acc Test-TPR Test-TNR 

SVC 13 0.72 ± 0.06 0.70 0.50 0.90 

KNN 19 0.69 ± 0.08 0.55 0.80 0.30 

LR 26 0.71 ± 0.05 0.55 0.30 0.80 

RF 12 0.68 ± 0.08 0.65 0.60 0.70 

DT 29 0.67 ± 0.04 0.65 0.60 0.70 

 

According to the results, the best models were the SVC and the RF, which obtained 70% and 65% 

test accuracy, respectively. The characteristics used in each model are listed in Table 10 for the SVC 

and Table 11 for the RF.   

 

Table 10 

Selected features in the SVC model for the English dataset. 

 

Pattern-related features  

• Mean retweet  

Word-related features  

• Std repeated words 

• Std total words 

• Max total words 

• Std letters / words ratio 

Emojis-related features  

• Std unique emojis 

• Mean emoji face-affection 

• Max emoji face-affection 

• Mean emoji face-hand 

• Max emoji face-hand 

• Mean emoji face-sleepy 

• Std emoji face-unwell 

• Std emoji-hands 

 

Table 11 

Selected features in the RF model for the English dataset. 

 

Pattern-related features  

• Mean retweets 

• Std mentioned users 

• Mean URLs 

Word-related features  

• Std stopwords 

• Max nouns 

• Max proper nouns 

• Max verbs 

Emojis-related features  

• Mean emoji face-costume 

• Mean emoji face-neutral-skeptical  

• Std emoji face-sleepy 

• Std emoji face-unwell 

• Std emoji-hands 

 

Since the classical machine learning models based on stylistic features obtained better results, it was 

decided to create an ensemble of the two best models obtained. The final prediction was obtained by 

combining the SVC and RF scores using the sum rule with an alpha weight associated with the score 

of each model, as previously performed in the Spanish ensemble. The combination is shown in the 

equation (2), where 𝑠𝑐𝑐 is the combined score, 𝑠𝑐𝑠𝑣𝑐 is the score from the SVC, 𝑠𝑐𝑟𝑓 is the score from 

the RF and alpha is the weight in the range [0,1]. 

 

𝑠𝑐𝑐  =  𝛼 · 𝑠𝑐𝑟𝑓 +  (1 −  𝛼) · 𝑠𝑐𝑠𝑣𝑐 (2) 

 



To find the best alpha estimate, values between 0 and 1 were tested in increments of 0.05 for the 

development set. The alpha value that achieved the highest accuracy was 0.65, which reached 56% 

accuracy on the development set.    

The ensemble of the SVC and RF was finally applied to the test set provided in the task, achieving 

58% accuracy. 

5. Conclusions and future work 

This paper presented the proposed ensemble models for the PAN 2021 Profiling Hate Speech Spreaders 

on Twitter shared task at CLEF 2021. The problem was addressed in two languages, namely Spanish 

and English, and two approaches were presented for each of them, whose evaluations in the task ranking 

are summarized in Table 12. For the Spanish dataset, an ensemble was created from a neural network 

with word embeddings and a logistic regression. The first one was created with all the tweets grouped 

by subject, whereas the second was based on statistic obtained from stylistic features computed for each 

user’s tweet. This approach achieved 83% accuracy on the provided test set. Regarding English dataset, 

an ensemble of a support vector classifier and a random forest, both based on statistics of stylistic 

features, achieved 58% accuracy on the provided test set.  

 

Table 12 

Accuracy in test data provided in the shared task for the English and Spanish models, and the mean of 

both used for the task ranking. 

 

Approach Accuracy (%) 

English ensemble 58.0 

Spanish ensemble 83.0 

Average 70.5 

 

Overall, the results showed that stylistic characteristics are important features to consider when 

identifying hate speech spreaders, as they helped to improve the results of the word embeddings in 

Spanish, and they obtained better results than word embedding for the English dataset. However, the 

task of detecting hate speech spreaders turned out to be very difficult for the English dataset. The best 

accuracy result was only 70% in our test partition, which accounted for 58% in the test provided in the 

shared task. Word embeddings were investigated for this language, but they were not included because 

they showed not accurate results, contrary to Spanish. The difference in accuracy between English and 

Spanish may indicate that users have different hate-spreading behaviors in different cultures. Future 

work will include adding more features, such as TF-IDF based n-grams for both words and characters.  
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