
VEBAV - A Simple, Scalable and Fast
Authorship Verification Scheme

Notebook for PAN at CLEF 2014

Oren Halvani and Martin Steinebach

Fraunhofer Institute for Secure Information Technology SIT
Rheinstrasse 75, 64295 Darmstadt, Germany
{FirstName.LastName}@SIT.Fraunhofer.de

Abstract We present VEBAV - a simple, scalable and fast authorship verification
scheme for the Author Identification (AI) task within the PAN-2014 competition.
VEBAV (VEctor-Based Authorship Verifier), which is a modification of our exist-
ing PAN-2013 approach, is an intrinsic one-class-verification method, based on
a simple distance function. VEBAV provides a number of benefits as for instance
the independence of linguistic resources and tools like ontologies, thesauruses,
language models, dictionaries, spellcheckers, etc. Another benefit is the low run-
time of the method, due to the fact that deep linguistic processing techniques like
POS-tagging, chunking or parsing are not taken into account. A further benefit
of VEBAV is the ability to handle more as only one language. More concretely, it
can be applied on documents written in Indo-European languages such as Dutch,
English, Greek or Spanish. Regarding its configuration VEBAV can be extended
or modified easily by replacing its underlying components. These include, for
instance, the classification function, the distance function, the acceptance crite-
rion, the underlying features (including their parameters) and many more. In our
experiments we achieved regarding a 20%-split of the PAN 2014 AI-training-
corpus an overall accuracy score of 65,83% (in detail: 80% for Dutch-Essays,
55% for Dutch-Reviews, 55% for English-Essays, 80% English-Novels, 70% for
Greek-Articles and 55% for Spanish-Articles).

1 Introduction

Authorship Verification (AV ) is a sub-discipline of Authorship Analysis [3, Page: 3],
which itself is an integral part of digital text forensics. It can be applied in many forensic
scenarios as for instance checking the authenticity of written contracts, threats, insults,
testaments, etc. where the goal of AV remains always the same: Verify if two docu-
ments DA and DA?

are written by the same author A, or not. An alternative reformula-
tion of the goal is to verify the authorship of DA?

, given a set of sample documents of
A. Both formulations hold for the AI-task within the PAN-2014 competition. In order
to perform AV at least four components are mandatorily required:

– The document DA?
, which should be verified regarding its alleged authorship.

– A training set DA = {D1A,D2A, ...}, where each DiA represents a sample docu-
ment of A.



– A set of features F = {f1, f2, ...}, where each fj (style marker) should help to
model the writing style of DA?

and each DiA ∈ DA.
– At least one classification method, which accepts or rejects the given authorship

based on F and a predefined or dynamically determined threshold θ.

From a Machine Learning perspective AV clearly forms an one-class-classification
problem [2], due to the fact that A is the only target class to be distinguished among all
other possible classes (authors), where their number can be theoretically infinite.

The aim of this paper is to provide a simple, scalable and fast AV scheme AV
scheme, which offers many benefits as for instance promising detection rates, easy im-
plementation, low runtime, independence of language or linguistic resources as well as
easy modifiability and expandability. Our proposedAV scheme VEBAV is based on our
earlier approach regarding the PAN 2013 AI-task, which itself formed a modification of
the Nearest Neighbor (NN) one-class classification technique, described by Tax in [4,
Page: 69].

In a nutshell, VEBAV takes as an input a set of sample documents of a known author
(DA) and exactly one document of an unknown author (DA?

). All documents in DA are
then concatenated into a big document which, depending on the length, is then splitted
again into three or five eqal-sized chunks (such that DA is updated by these chunks).
Next, feature vectors are constructed from each DiA ∈ DA and from DA?

. Then, a
representative is selected among the training feature vectors, which is important to de-
termine the decision regarding the alleged authorship. In the next step distances are cal-
culated between the representative and the remaining training feature vectors, but also
between it and the test feature vector. Depending on all calculated distances a twofold
decision regarding the alleged authorship is generated, which includes a ternary deci-
sion δ ∈ {Yes, No, Unanswered} and a probability score ρ that describes the soundness
of δ.

The rest of this paper is structured as follows. In the following section 2 we present
all feature sets, which have been used in this paper. After that we describe in section our
verification scheme. In 4 we present the corpus that was used to evaluate our method.
In section 5 we provide the results regarding the test set, which are based on four exper-
iments. Finally, we draw our conclusions in section 6 and provide some ideas for future
work.

2 Features

Style markers (features) are the core of AV , since they are able to approximate writing
styles and thus, can help to judge if two texts are originate from the same style. If this
holds, it is an indicator that both texts have been written by the same author. In the
next subsections we explain from where exactly quantifiable features can be retrieved,
which tools are required for the extraction process and finally what kind of feature sets
we used in our approach.



2.1 Linguistic layers

Typically, features are extracted from linguistic layers, which can be understood as
abstract units within a text. In general, the most important linguistic layers are the fol-
lowing:

– Phoneme layer: This layer includes phoneme-based features as for example vow-
els, consonants or also the more sophisticated supra-segmental or prosodic features.
Such features can typically be won out of texts by using (pronouncing) dictionaries
(e.g. IPA).

– Character layer: This layer includes character-based features as for instance pre-
fixes, suffixes or letter n-Grams, which typically are extracted from texts via regular
expressions.

– Lexical layer: This layer includes token-based features as for instance function
words or POS-Tags (Part-Of-Speech Tags). These features can be extracted from
texts via tokenisers (which often are based on simple regular expressions).

– Syntactic layer: This layer includes syntax-based features as for instance con-
stituents (e.g. nominal phrases) or collocations. Such features can be extracted by
sophisticated regular expressions or by natural language processing tools (e.g. POS-
Tagger). However, the latter one is normally bounded to a specific language model
and thus, cannot scale to multiple languages. Besides this the runtime of natural
language processing tools is much more higher as the runtime caused by regular
expressions.

– Semantic Layer: This layer includes semantic-based features, e.g. semantic rela-
tions (hyponymous, synonymys, meronyms, etc.). Such features require deep lin-
guistic processing, which often rely on external knowledge resources (e.g. Word-
Net) or complex tools (e.g. parsers, named entity eecognizers, etc.).

In VEBAV we only make use of the Character, Lexical and Syntactic linguistic
layers, due to their effectiveness and their low runtime.

2.2 Feature sets

In this paper we use the term feature set denoted by F , which consists of features
belonging to at least one linguistic layer. Table 1 shows 14 feature sets that have been
used in our experiments.

2.3 Parameters

The feature sets mentioned in Table 1 can be parameterized in several ways, e.g. by the
n-Gram sizes, the number of k for prefixes/suffixes and the number of the top frequent
occurring features. It should be emphasised that adjusting such settings can influence
the results massively.



Fi Feature set Description Examples
F1 Characters All kind of characters {a,b,1,8,#,<,%,!,. . .}
F2 Letters All kind of letters {a,b,α, β,ä,ß,ó,á,ñ,. . .}
F3 Punctuation marks Symbols to structure sentences {.,:,;-,",(,),. . .}
F4 Word k Prefixes The k starting letters of words example {e,ex,exa,exam,. . .}
F5 Word k Suffixes The k ending letters of words example {e,le,ple,mple,. . .}
F6 Character n-Grams Overlapping character-fragments ex-ample {ex-,x-a,-am,. . .}
F7 Letter n-Grams Overlapping letter-fragments example {exa,xam,amp,. . .}
F8 Tokens Segmented character-based units A [simple] text! {A,[simple],text!}
F9 Words Segmented letter-based units A [simple] text! {A,simple,text}
F10 Token n-Grams Overlapping token-fragments A [simple] text! {A [simple],[simple] text!}
F11 Word n-Grams Overlapping word-fragments A [simple] text! {A simple,simple text}
F12 Mix1 A mix of three feature sets F1 ∪ F3 ∪ F6

F13 Mix2 A mix of three feature sets F1 ∪ F2 ∪ F5

F14 Mix3 A mix of four feature sets F3 ∪ F4 ∪ F5 ∪ F8

Table 1: All feature sets used in our approach.

3 Proposed Verification Scheme

In this section we give a detailed description of VEBAV. For overview reasons we di-
vided the entire workflow of the algorithm into six subsections, where we first explain
what kind of preprocessing we perform on the data. The other five subsections focus on
the algorithm itself.

3.1 Preprocessing

In contrast to our approach in PAN-2013 we decided in our current approach neither
to apply normalization nor noise reduction techniques. Instead, we treat each text as
it is, which turned out to be not only less burdensome but also promising. Our only
preprocessing is restricted to concatenate all DiA ∈ DA into a single document DA,
which is then splitted into ` (near) equal-sized chunks D1A,D2A, ...,D`A. Here, ` is
statically set to five chunks if, and only if, the length of DA is above 15,000 characters.
Otherwise ` is statically set to three chunks.

3.2 Vocabulary Generation

In order the form a basis for the construction of feature vectors, we need the build a
global vocabulary V . For this, we first generate for DA?

and each chunk DiA ∈ DA
their corresponding vocabularies VDA?

and VD1A ,VD2A , ...,VD`A . Next, we apply an
intersection among all vocabularies to build the global vocabulary:

V = VDA?
∩ VD1A ∩ VD2A ∩ . . . ∩ VD`A

3.3 Constructing feature vectors

After V is generated, the next step is to construct the feature vectors F1A,F2A, ...,F`A
from each DiA ∈ DA and FA? from DA?

. Beforehand, at least one appropriate feature
set Fi must be chosen, where appropriate refers to:



– Features that appear in all generated vocabularies (such that V 6= ∅).
– Features that are able to model high similarity between DA?

and DA (for the case
A? = A).

– Features that are able to highly discriminate between the writing style of A and all
other possible authors (for the case A? 6= A).

Each feature vector consists of exactly n = |V| numerical values, where each value
represents a relative frequency of a feature within its underlying document, according
to chosen Fi.

3.4 Representative Selection

After constructing all feature vectors, a representative (training-) feature vector Frep

must be selected. This step is essential for the later determination of the decision re-
garding the alleged authorship. In general, VEBAV offers two options to select Frep:

– Selecting Frep manually (static).
– Selecting Frep dynamically by using a similarity function (e.g. cosine similarity)

between all training feature vectors. Here, Frep is selected according to the fea-
ture vector, who is mostly dissimilar from the others. In other terms Frep can be
understand as an outlier.

3.5 Distances Calculations

In this step we calculate the distances that are needed to determine the decision regard-
ing the alleged authorship. Concretely, we calculate the distances d1, d2, ..., d` between
Frep and each F1A,F2A, ...,F`A as also the distance d? between Frep and FA?. The
calculation of these distances requires a predefined distance function dist(X,Y ), where
X refers here to Frep and Y to some other feature vector. We integrated a broad range
of distance functions into VEBAV, where the majority have been taken from [1]. How-
ever, in our experiments we did only make use of the two distance functions Minkowski
and Canberra, due to their promising results over the other distance functions. As a
last step we calculate the average regarding the distances of the training feature vectors
d∅ = 1

` (d1 + d2 + . . .+ d`).

3.6 Decision Determination

The goal of this step is to construct a twofold decision regarding the alleged authorship,
which consists of a ternary decision δ ∈ {Yes, No, Unanswered} and a probability
score ρ. In order to calculate these terms both values are required d? and d∅. For the
latter one we use the following adjusted form: d ′ = d∅ + (ω · τ). Here, ω represents a
weight and τ a tolerance parameter, which is calculated from the a standard deviation
of d1, d2, ..., d`. The intention behind ω and τ is to handle noisy writing styles, which
still might be coined from the same author. With this we calculate ρ and δ as follows:

ρ =
1

1 + d?

d ′

, δ =


Yes, d? < d ′

No, d? > d ′

Unanswered, (d? = d ′) ∧ (|d? − d ′| < ε)



The semantic behind δ is:

– Yes: VEBAV predicts the alleged author as the true author (A? = A).
– No: VEBAV predicts the alleged author not as the true author (A? 6= A).
– Unanswered: VEBAV was unable to generate the prediction because d? and d ′ are

near-equal or due to another unexpected result. Depending on how ε was chosen
the number of Unanswered decisions can vary considerably. In our experiments we
to chose ε = 0, 001 as this restricts Unanswered decisions when ρ is near 0.5.

4 Used Corpora

Regarding our experiments we used the CPAN-14 (PAN-2014 Author Identification) train-
ing corpus, released by the PAN organizers at 22.04.2014. CPAN-14 consists of 695
problems (in total 2,382 documents), equally distributed regarding true/false author-
ships. A problem pi forms a tuple (DAi

,DAi?), where DAi
denotes the training set

author Ai and DAi? the questioned document, which was (or not) written by Ai.
Each problem belongs to one of four languages (Greek, Spanish, Greek and Span-
ish and to one of four genres (Essays, Reviews, Novels and Articles). For simplifi-
cation reasons, CPAN-14 is divided into six subcorpora and thus, can be formulated as
CPAN-14 = {CDE, CDR, CEE, CEN , CGR, CSP}. This makes it easier to treat each subcorpus
independently (e.g. in terms of parameterisations). The full name of each C ∈ CPAN-14 is
given below:

• CDE: Dutch-Essays • CEE: English-Essays • CGR: Greek-Articles

• CDR: Dutch-Reviews • CEN : English-Novels • CSP: Spanish-Articles

For our experiments we used 80% of CPAN-14 for training and parameter learning
(denoted by CPAN-Train), while the remaining 20% was used for testing (denoted by
CPAN-Test).

5 Evaluation

In this section we carry out our evaluation regarding the CPAN-14 = CPAN-Train ∪ CPAN-Test

corpus. We first explain which performance measures were used and secondly, how
the most important parameters were learned from CPAN-Train. Finally, we evaluate our
approach on CPAN-Test.

5.1 Performance measures

In order to evaluate our approach, we used several performance measures, sharing the
following variables:

– n = Number of problems in C
– nc = Number of correct answers per C



– nu = Number of unanswered problems answers per C

The first performance measure is:

Accuracy =
Number of correct answers per dataset C
Total number of documents per dataset C

Regarding the second performance measure we first define both terms AUC and
c@1 as follows:

AUC =

n∑
i=1

ρ , c@1 =
1

n

(
nc +

(
nu ·

(nc
n

)))
With these two we define the second performance measure: AUC ·c@1. Note, re-

garding the process of learning the most important parameters on CPAN-Train we only
make use of the Accuracy measure.

5.2 Experiment I: Finding an optimal λ for the Minkowski distance function

The intention behind this experiment was to find an optimal λ parameter, used by the
Minkowski distance function. Since λ has a strong influence on the classification result it
must be well-chosen, in order to generalize across the range of all involved corpora and
all feature sets. To achieve this generalization we merged all training subcorpora, such
that CPAN-Train = CDE ∩ CDR ∩ CEE ∩ CEN ∩ CGR ∩ CSP holds. Afterwards, we applied
VEBAV on CPAN-Train, where as an input we used all mentioned feature sets in Table 1 and
the following 14 predefined λ values {0.2, 0.4, 0.6, 0.8, 1, 2, ..., 10}. We constructed
from the results a table, where the rows represent the feature sets F1, F2, . . . , F14, while
the columns represent the 14 λ values. Next, we derived a row from this table that
includes the medians regarding all columns. This row is illustrated in Figure 1.

56,22 55,68

0

10

20

30

40

50

60

Figure 1. Comparison of different λ values for the Minkowski distance function.

As can be seen, an optimal range for for λ is [0.2; 1], where 0.6 seems to be the most
promising one in terms of robustness, among all involved feature sets. As a consequence
of this analysis, we decided to use λ = 0.6 for the further experiments.



5.3 Experiment II: Determinig the classification stregth of all feature sets

In this experiment we wanted to compare the classification stregth of all involved feature
sets. Hence, we applied VEBAV again on F1, F2, . . . , F14, where this time we used only
0.6 as a fixed λ value. The results are illustrated in Figure 2.

60,36 60,36 60,18

0

10

20

30

40

50

60

70

Figure 2. Average accuracies for all feature sets across all training corpora (using λ = 0.6).

As can be seen, the majority of all feature sets are more or less equally strong,
excepting F10 and F11, which seem to be useless for VEBAV (at least for CPAN-Train).
Another observation is that mixing several feature sets increases the classification qual-
ity only slightly.

5.4 Experiment III: Single feature sets vs. feature set combinations

In this experiment we were curious to know, if using combinations of feature sets by
applying majority-voting can outperform classifications based only on single feature
sets. As a setup for this experiment, we picked out the six most promising feature sets
{F1, F2, F5, F12, F13, F14} and used them to construct a power set P, which includes
26 = 64 feature set combinations. Next, we removed those subsets Fcombi ∈ (P \ ∅)
comprising of an even number of feature set combinations, to enable a fair (non-random
based) majority-voting and also to speed the classification process up a little by avoiding
unnecessary runs. This led to 25 = 32 suitable combinationsFcomb1, Fcomb2, . . . , Fcomb32,
where we applied each Fcomb as an input for VEBAV regarding CPAN-Train. We stored all
combinations and their corresponding classification results in a list (sorted in descend-
ing order) and extracted out the top five results, given in Table 2:It can be observed from Table 2 that applying majority-voting on feature set combi-
nations gives negligible results (61.8%− 60.36% = 1.44%).

5.5 Experiment IV: Obtaining corpus dependent parameters

Due to the fact that the classification scores regarding the Experiments I-III were rel-
atively low, we decided in this experiment to learn individual parameters from each



Fcomb Accuracy
{F1, F2, F5, F12, F14} 61, 8%

{F3, F12, F13} 61, 62%

{F1, F2, F5, F13, F14} 61, 62%

{F2, F5, F12, F13, F14} 61, 26%
{F1, F3, F12} 61, 26%

Table 2: Five top performing feature set combinations.

corpus C ∈ CDE, CDR, CEE, CEN , CGR, CSP. Therefore, we first applied VEBAV on each
C to obtain individual λ scores. Since there where six corpora, we constructed six ta-
bles, where the rows denote F1, F2, ..., F14 and the coloumns the 14 λ values. Then,
we picked those six tuples (Fi, λj), which led to the maximum accuracy score in each
table. The selected tuples are given in Table 3.

C (Fi, λj) Accuracy
CDE (F12, 0.6) 73, 68%

CDR (F12, 0.8) 60, 76%

CEE (F12, 1) 63, 75%

CEN (F3, 0.6) 75%

CGR (F3, 0.2) 65%

CSP (F7, 1) 71, 25%

Table 3: The most promising tuple for each training corpus.

5.6 Results for the test set

In order to evaluate VEBAV on the test set CPAN-Test we used all relevant information,
learned from the prior experiments. For the first evaluation we set as an input for VEBAV
the generalized parameters λ = 0.6 and F12, learned from Experiments I-II. The results
are given in Table 4.

C Accuracy AUC·c@1

CDE 80% 0, 40248

CDR 45% 0, 2445525

CEE 65% 0, 3147625

CEN 45% 0, 2309625

CGR 50% 0, 262025

CSP 55% 0, 2602875

Table 4: Results regarding CPAN-Test, using generalized parameters.

In the second and last evaluation we used the individual parameters, learned in Ex-
periment IV. The results are given in Table 5.As can be seen, it makes sense to use individual parameters over generalized pa-
rameters, but one may pay the price of overfitting.



C (Fi, λj) Accuracy AUC·c@1

CDE (F12, 0.6) 80% 0, 40248

CDR (F12, 0.8) 55% 0, 30569

CEE (F12, 1) 55% 0, 25801125

CEN (F3, 0.6) 80% 0, 4146

CGR (F3, 0.2) 70% 0, 362425

CSP (F7, 1) 55% 0, 28072275

Table 5: Results regarding CPAN-Test, using individual parameters.

6 Conclusion & future work

In this paper we presented a simple, scalable and fast authorship verification scheme for
the Author Identification task within the PAN-2014 competition. Our method provides
a number of benefits as for instance language independence (at least for Indo-European
languages) and also independence of linguistic resources (e.g. ontologies, thesauruses,
language models, etc.). A further benefit is the low runtime of the method, since there is
no need for deep linguistic processing like POS-tagging, chunking or parsing. Another
benefit is that the involved components within the method can be replaced easily as for
example the classification method, the acceptance-threshold or the feature categories
including their parameters. Moreover, the components can be extended or combined
e.g. through ensemble-techniques (combination of several style deviation methods).

Unfortunately, besides benefits our approach includes several pitfalls, too. One of
the biggest challenges, for example, is the inscrutability of the methods parameter-
space, due to the fact that the number of possible configuration settings is near infinite.
Such settings include for instance the λ parameter for the involved distance function,
the values for n and k (n-grams, k-prefixes/suffixes) but most of all the weight (ω) and
tolerance (τ ) parameters that influence to classification quality. Due to the complexity
of our scheme we could only perform a small number of experiments to obtain at least
an optimal λ and the most promising feature sets.

Another challenge that remains unsolved is how to optimize the probability score ρ
determined in the decision determination step, as this value has also a strong influence
on the resulting AUC*c@1 scores. Hence, further tests are essential for the applicability
of the scheme.

7 Acknowledgements

This work was supported by the CASED Center for Advanced Security Research Darm-
stadt, Germany funded by the German state government of Hesse under the LOEWE
programme (http://www.CASED.de).

References
1. Cha, S.H.: Comprehensive Survey on Distance/Similarity Measures between Probability

Density Functions. International Journal of Mathematical Models and Methods in Applied
Sciences 1(4), 300–307 (2007), http://www.gly.fsu.edu/ parker/geostats/Cha.pdf



2. Koppel, M., Schler, J.: Authorship Verification as a One-Class Classification Problem. In:
Proceedings of the twenty-first international conference on Machine learning. pp. 62–. ICML
’04, ACM, New York, NY, USA (2004), http://doi.acm.org/10.1145/1015330.1015448

3. Stamatatos, E.: A Survey of Modern Authorship Attribution Methods. J. Am. Soc. Inf. Sci.
Technol. 60(3), 538–556 (Mar 2009), http://dx.doi.org/10.1002/asi.v60:3

4. Tax, D.M.J.: One-Class Classification. Concept Learning In the Absence of
Counter-Examples. Ph.D. thesis, Delft University of Technology (2001),
http://www-ict.ewi.tudelft.nl/˜davidt/thesis.pdf


