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Abstract
Authorship verification is a growing field of research that aims to determine whether two texts were
written by the same author or different authors. In this paper, we describe our system for the PAN@CLEF
2023 Authorship Verification challenge [1] which requires solving the task on a cross-Discourse Types
and open-set collection of essays (written discourse), emails (written discourse), Interviews (spoken
discourse), and Speech transcriptions (spoken discourse). We use Sentence-Transformers which is a
popular framework for generating sentence embedding based on the idea of using pre-trained language
models, such as BERT (Bidirectional Encoder Representations from Transformers) to capture the semantic
features of different authors’ documents. As a result of studying multiple sentence-transformers, we
selected all-MiniLM-L12-v2 model and achieved the first rank in PAN 23 with an overall score of 62.3%
on the testing set.
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1. Introduction

Authorship Verification (AV) is a specialized area in the field of digital texts that focuses on
analyzing and comparing the unique stylistic and linguistic characteristics present in multiple
texts. The primary objective of AV is to ascertain whether these texts were authored by the
same individual. Its significance has been magnified in recent times due to the abundance of
digital content accessible through digital libraries, online journalism platforms, and social media
networks.
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AV serves a crucial purpose in various domains where automatic verification of document
authorship is essential. With the exponential growth of digital texts available online, the need
to accurately determine the authorship of documents has become increasingly prominent. This
is particularly relevant in contexts where the evaluation of researchers relies on the impact
and quantity of their publications. Similarly, public figures often face scrutiny based on their
social media posts. In such scenarios, AV offers a valuable tool to establish the authenticity and
authorship of documents.

The digital landscape, encompassing digital libraries, online journalism, and social media
platforms, has witnessed a surge in textual data. However, along with this surge, there has also
been an upswing in online crimes. AV plays a pivotal role in addressing these challenges by
identifying instances of fraudulent activities, such as phishing emails, and detecting cases of
plagiarism. By analyzing stylistic features embedded in texts, including writing style, genre,
temperament, sentiment, native language, and gender, AV provides insights into the unique
attributes and traits of authors.

In summary, AV is a specialized field that utilizes advanced techniques to analyze and compare
the distinctive patterns and features present in multiple texts, with the aim of determining
whether they share a common author. The increasing availability of digital texts and the need
for accurate document authorship verification in various domains underscore the significance
of AV in today’s digital landscape.

In the authorship verification task at PAN@CLEF-2023 [2] they introduced more challenging
scenarios where each author verification case considers texts from different discourse types.
This edition focuses on cross-discourse type authorship verification, including both written
(essays and emails) and spoken language (interviews and speech transcriptions). The corpus
consists of texts from around 100 individuals, all native English speakers aged 18-22. The topics
of the texts are unrestricted, and the level of formality may vary within each discourse type.

Most of the documents in the training set of PAN23 are emails, interviews and speech-
transcriptions which are relatively short documents. This inspired us to use Sentence-Transformers
specially SBERT [3] due to their power in semantic similarity tasks in addition to their efficiency.
We evaluated different pre-trained models for their quality to embedded sentences.

As, the used models are trained for short sentences, this directed us to chunk the documents
in the pairs to fit in the max-sequence length of the used pre-trained models. We tried different
chuncking techniques. These chunking techniques will be explained in section 4.2.

This paper is structured as follows: Section 2 provides a background and related work on
authorship verification. Section 3 describes the dataset used in the PAN@CLEF 2023 challenge,
including the different discourse types and the number of texts in each category. Section 4
explains the preprocesing step on the dataset and the chunking technique for handling long
texts. Section 5.1 presents the methodology used in our system, including the use of Sentence-
Transformers for generating sentence embeddings. Section 6 discusses experiments on other
models, including a model that uses only stylometric features. Section 7 discusses the results
and performance of these models on the validation set. Finally, Section 8 concludes the paper.



2. Background and Related work

Reimers and Gurevych (2019) [3] propose a new method for generating sentence embeddings,
which are vector representations of sentences that capture their semantic meaning. The authors
use a Siamese neural network architecture, based on the BERT model, to generate embeddings
that are optimized for use in tasks such as semantic similarity and paraphrase detection. The
model is trained on a large corpus of text data, and the resulting embeddings are shown to
outperform previous state-of-the-art methods on several benchmark datasets. The authors
also introduce a new technique for fine-tuning the model on smaller datasets, which further
improves its performance on specific tasks. In PAN@CLEF 2021, Peng et al. (2021) [4] propose
a method that utilizes a pre-trained model to encode text information to solve the authorship
verification in the PAN@CLEF 2021. To resolve the problem of long text encoding, the method
proposed is to split long texts into short texts that a pre-trained model, BERT, can encode.
The classification model achieved the highest c@1 and F1-score on the small dataset of PAN
Authorship Verification datasets. Accordingly, the approach described can encode long text
information efficiently in long text pairs.

Stylometric feature extraction is another approach proposed by, Weerasinghe et al. (2021) [5]
The authors demonstrate the impact of different feature representations on the performance of
the proposed method of computing the absolute difference between the feature vectors as input
to the logistic regression classifier for each document pair, they evaluate several feature sets,
including word and character n-grams, punctuation usage, and syntactic features.

BERT-like transformers for authorship verification also perform well in this task. Manolache
et al., (2021) [6] explore the use of them for authorship verification, The authors evaluate several
transformers on the PAN-2020 dataset and find that they achieve high performance, but also
they show through Integrated Gradients XAI technique that, they rely on topical clues rather
than stylistic features. To address this issue, the authors propose new splits for the dataset that
ensure topic and author diversity and show that they improve the models’ domain generalization
ability. The authors also introduce a new dataset, DarkReddit, that contains texts from different
domains and genres, and use it to test the models in a low-data regime.

Galicia et al.,(2022)[7] proposed a Graph-based Siamese Network approach for the authorship
verification task at PAN 2022 [8]. They also introduced a way to split PAN22 dataset to ensure
that the training and validation sets are both balanced and author-disjoint. This is important to
avoid misleading results that may arise from data leakage or overfitting.

3. Data Description

The evolution of authorship verification tasks in previous editions of PAN@CLEF competitions
is as follows. Initially, the task focused on comparing writing styles in different languages and
genres. Later, cross-domain authorship verification using fan-fiction texts was explored and
found to be feasible across different fandom. In the 2022 edition, more challenging scenarios
were introduced, involving cross-DT authorship verification, where texts belonged to different
discourse types (DTs), all within the realm of written language. The current edition focuses on
cross-discourse type authorship verification, where both written language (essays and emails)



and spoken language (interviews and speech transcriptions) are included as discourse types.
The dataset provided by PAN is a collection of English texts from different Discourse Types

(DT). The goal of the task is to determine if two texts from different DTs are written by the same
author. The dataset has a tag for each pair of texts indicating the authorship, the author, and
the discourse type of each text. Since we augment the training set of PAN 23 by the training set
of PAN 22. The next subsections describe both of them.

3.1. Authorship Verification Dataset at PAN 2022

In that dataset the organizers provide cross-DT authorship verification cases using DTs corre-
sponding to written language.
The discourse types and their corresponding number of texts in the train dataset are:

• Essays (written discourse): 2986
• Emails (written discourse): 10116
• Text messages (written discourse): 9446
• Business memos (written discourse): 1980

The corpus consists of texts from approximately 100 individuals who are native English speakers
and share a similar age range of 18-22. The text samples cover a wide range of topics, without
any restrictions, and within each discourse type, there can be variations in the level of formality.

Table 1
Combinations of Different Discourse Types for Each Pair in PAN 22

Pair Discourse Type Combination Number of Pairs

(’Email’, ’Text message’) 7484
(’Essay’, ’Email’) 1618

(’Business memo’, ’Text message’) 780
(’Essay’, ’Text message’) 1182

(’Email’, ’Business memo’) 1014
(’Essay’, ’Business memo’) 186

3.2. Authorship Verification Dataset at PAN 2023

In that dataset the organizers provide cross-DT authorship verification cases using DTs not
only corresponding to written language but also to spoken language.
The discourse types and their corresponding number of texts in the train dataset are:

• Essays (written discourse): 2594
• Emails (written discourse): 7054
• Interviews (spoken discourse): 6090
• Speech transcriptions (spoken discourse): 1934



And also, the corpus consists of texts from approximately 100 individuals who are native English
speakers and share a similar age range of 18-22. The text samples cover a wide range of topics,
without any restrictions, and within each discourse type, there can be variations in the level of
formality.

Table 2
Combinations of Different Discourse Types for Each Pair in PAN 23

Pair Discourse Type Combination Number of Pairs

(’Speech transcription’, ’Email’) 1036
(’Email’, ’Interview’) 4564

(’Essay’, ’Email’) 1454
(’Essay’, ’Interview’) 884

(’Speech transcription’, ’Interview’) 642
(’Essay’, ’Speech transcription’) 256

3.3. Data Augmentation

Based on the strong similarity between the two tasks of PAN 22 and PAN 23, and because the
number of pairs in the new task of PAN 23 is too small, we decided to combine both train
datasets into one train dataset.

Table 3
Number of problems, texts, authors and topics in the PAN 22 and PAN 23 train datasets.

Problems Unique Texts Authors Discourse Types

PAN 22 Train Dataset 12264 1046 56 Essays, Emails, Text messages and Business memos
PAN 23 Train Dataset 8836 886 56 Essays, Emails, Interviews and Speech transcriptions

Essays, Emails,
Combined Dataset 21100 1932 112 Text messages, Business memos,

Interviews and Speech transcriptions

That new dataset has the following number of texts for each discourse type:

• Essays (written discourse): 5580
• Emails (written discourse): 17170
• Text messages (written discourse): 9446
• Business memos (written discourse): 1980
• Interviews (spoken discourse): 6090
• Speech transcriptions (spoken discourse): 1934

And the new number of combinations in that combined dataset are shown in Table 4.



Table 4
Combinations of Different Discourse Types for Each Pair in the Combined Dataset

Pair Discourse Type Combination Number of Pairs

(’Email’, ’Text message’) 7484
(’Essay’, ’Email’) 3072

(’Business memo’, ’Text message’) 780
(’Essay’, ’Text message’) 1182

(’Email’, ’Business memo’) 1014
(’Essay’, ’Business memo’) 186

(’Speech transcription’, ’Email’) 1036
(’Email’, ’Interview’) 4564
(’Essay’, ’Interview’) 884

(’Speech transcription’, ’Interview’) 642
(’Essay’, ’Speech transcription’) 256

4. Data Preprocessing

This section describes the pre-processing operations we did on the combined dataset.

4.1. Data Splitting

We used an author-disjoint method similar to the one introduced in [7] to split the dataset into
training and validation sets for our model evaluation. This means that no text from one set
has the same author as any text from another set. Since the dataset had 21,100 problems and
only 112 authors, this method resulted in unbalanced sets, with more positive problems than
negative ones. To address this issue, we generated new negative instances by pairing texts
from different authors. We followed these steps: Let A and B be the subsets of texts from each
set grouped by author. We obtained positive and negative pairs by computing the Cartesian
products P = A × A and N = A × B respectively. Then, we removed pairs that had the same
DT, and finally randomly sampled positive and negative pairs from P and N sets to balance the
training and validation sets. The final dataset had an equal number of true and false problems.
The total number of problems and the number of problems in the positive class, the number of
texts and authors on each partition are shown in Table 5.

Table 5
Total number of problems, number of problems in the positive class, number of texts and number of
authors on our splits.

Split Total Positive Unique Texts Authors

Train 18968 9484 1740 101
Val 2132 1066 192 11



4.2. Texts Chunking

The sentence transformer is based on a Siamese Network that takes two texts (documents)
as input. The length of document 1 and/or document 2 can be larger than the max-sequence-
length,K, allowed by the sentence -transformer model. So, for training, we chunk each document
into a set of chunks , each of size K. We combine the first 2 chunks of the 2 documents, the
second 2 chunks, etc. This creates for each original pair, M pairs, where M is the number of
chucks of the larger document. The chunking at evaluation time is described in section 5.2.

5. Model Configuration

5.1. Model Architecture

We chose all-MiniLM-L12-v2 as our model. It is a Siamese network, based on BERT-like pre-
trained model. It belongs to the family of sentence transformers. It uses a contrastive learning
objective and has a max sequence length of 256 tokens. It is a lightweight model with a size
of 120 MB. However, it provides high-quality semantic similarity in addition to its efficiency.
Figure 1 shows the model architecture at training and at inference times.

Figure 1: Model Architecture



5.1.1. Embedding Layer

It is the first layer of the model, responsible for converting input tokens into dense vector
representations (embeddings). BERT-like models typically use a combination of token embed-
dings, segment embeddings, and position embeddings. The token embeddings are learned
representations specific to each token in the model’s vocabulary. Segment embeddings are used
to distinguish different sentences, and position embeddings give the model a sense of the order
of words in a sentence since transformers don’t have a built-in understanding of sequence order.

5.1.2. Transformer Encoder Layers

These are the core of the model. Each transformer encoder layer consists of two sub-layers:

• Self-Attention Mechanism (Multi-Head Attention): The purpose of the self-attention
mechanism is to compute a representation of each word that takes into account the
influence of other words in the sentence.
In each attention head, for every word, the model calculates a score (attention score) that
signifies how much focus should be placed on other words. These scores determine how
much each word will contribute to the final representation of the current word.
The mechanism performs the following steps:

– Query, Key, and Value Vectors: Each input word is transformed into Query, Key,
and Value vectors using learned linear transformations.

– Attention Score: An attention score is computed for each pair of words. This score
is calculated as the dot product of the Query vector of the current word and the Key
vector of the other word, followed by a scaling operation (dividing by the square
root of the dimension of the key vector).

– Softmax Normalization: The attention scores are then passed through a softmax
function to obtain the weights, which ensures they are positive and sum to 1.

– Weighted Sum: Finally, a weighted sum of the Value vectors of all words is com-
puted, where the weights are the softmax-normalized attention scores.

This process is done in parallel in each attention head. Each head may potentially learn
to pay attention to different types of connections between words.
The output from each head is concatenated and linearly transformed to produce the final
output of the multi-head attention layer.

• Feed-Forward Neural Network: The output from the self-attention mechanism for each
position passes through this layer. It’s a simple feed-forward neural network that consists
of two fully connected layers with a ReLU activation function in between. This network
doesn’t have recurrent or convolutional connections, and it operates independently on
each position, treating each position identically. This is where most of the model’s
parameters reside.

Apart from these, there are also residual connections around both the self-attention and FFNN
components, followed by layer normalization. The residual connections help in preventing the
vanishing gradient problem and enable the model to be deeper. Layer normalization is used to
stabilize the network’s learning process and reduce training time.



These components work together to create a powerful model that can capture complex
patterns in the input data. The stacking of multiple layers allows the model to learn more
abstract and high-level features as the information propagates up the layers.

5.1.3. Pooler Layer

Once the transformer layers have processed the input, the final step in the model architecture
is to convert the output into a fixed-size sentence embedding. This is achieved by applying a
pooling operation to the output of the transformer layers. The output is a single vector that
represents the entire input sentence.

5.2. Evaluation

As can be seen from the model architecture (Figure 1) the output at evaluation time is the
cosine similarity of two chunks from the two documents. At the evaluation, the first chunk of K
tokens of each document is compared, the second grouping of K tokens from each document
is compared, etc. Finally, we take the average of the M scores as the final cosine similarity.
Since the cosine similarity range is from -1 to 1, we re-scale the score to be from 0 to 1 using
the approach proposed in the baseline model of PAN 22. During training, we optimize two
threshold values p1 and p2. All evaluation scores lower than p1 correspond to negative answers,
and all evaluation scores greater than p2 are scaled to positive answers. The remaining scores
(between p1 and p2) are set to 0.5 and are left unanswered.

5.3. Hyper-parameter Tuning

Hyperparameter tuning plays a crucial role in optimizing the performance of the model. In this
section, we outline the hyperparameters used in our experiments and describe the process of
tuning them.

5.3.1. Model Configuration

We employed the "all-MiniLM-L12-v2" model architecture (with 256 tokens as max-seq-length)
for our experiments. This model has shown promising results in various natural language
processing tasks and is pre-trained on a large corpus of text data.

5.3.2. Hyper-parameters

The list below includes the hyper-parameters considered, together with the values selected after
fine tuning, using the validation set.

• Chunk Length: We set the chunk length to 256, which determines the maximum length
of text chunks used during training and evaluation.

• Batch Size: The batch size was set to 32, which determines the number of training
samples processed in parallel during each iteration.

• Distance Metric: We used the cosine distance metric to measure the similarity be-
tween text embeddings.



• Loss Function: We utilized the ContrastiveLoss function as the loss function for
training the model.

• Epochs: We trained the model for 189 epochs, representing the number of times the
entire dataset was iterated during training.

• Scheduler: The learning rate scheduler was set to ’warmuplinear’, which gradually
increases the learning rate during the warm-up phase and then linearly decays it.

• Warmup Steps: The warm-up steps were set to 0, indicating that no warm-up phase
was employed.

• Learning Rate: We set the initial learning rate to 2e-05, which determines the step
size during gradient descent optimization.

• eps: The epsilon value was set to 1e-06, which prevents division by zero in certain
calculations.

• Thresholds P1&P2: The thresholds values that were used to leave difficult cases unan-
swered as explained in section 5.2 as, they were set to 0.45 and 0.54 respectively.

5.3.3. Hyper-parameter Tuning Process

The process of hyper-parameter tuning involved a combination of manual exploration and
iterative experimentation. We started with initial values based on previous studies and gradually
refined them through empirical evaluation.

We performed a grid search on the validation set to explore different combinations of hyper-
parameters. For each combination, we trained the model and evaluated its performance using
the evaluation metrics in section 5.2, such as area under the curve (AUC), C@1 score, F1 score,
Brier score, and overall performance.

Based on the evaluation results, we iteratively adjusted the hyper-parameters to improve the
model’s performance. This process involved experimenting with different values for specific
hyper-parameters while keeping others constant. We repeated this iterative process until we
achieved satisfactory performance on the validation set.

5.3.4. Performance Comparison

To assess the impact of hyper-parameter tuning, we compared the performance of the model
before and after tuning. The evaluation metrics mentioned in section 5.2 were used to measure
and compare the performance across different hyper-parameter configurations.

6. Experiments on Other Models

We performed experiments on two other models. The first is nli-distilroberta-base-v2 , which
is a sentence-transformer model based on distilroberta. It has a max-sequence-length of 512
tokens. The second model is the Stylometric model proposed in [5]. The results of these models
on PAN 23 validation set are given in section 7.



7. Results

Table 6 shows our results on the Authorship verification PAN 23 validation dataset using
all-MiniLM-L12-v2, nli-distilroberta-base-v2 and the Stylometric model.

Table 6
Results of Authorship verification PAN23 Validation dataset

Model AUC C@1 F0.5u F1-score Brier Overall

all-MiniLM-L12-v2 0.684 0.632 0.615 0.711 0.761 0.681
nli-distilroberta-base-v2 0.572 0.509 0.553 0.667 0.692 0.598

Stylometric Model 0.505 0.512 0.433 0.343 0.521 0.463

So, the best one is the all-MiniLM-L12-v2 model, which was selected for the submissions.
The performance of our three submitted runs on the PAN23 dataset is presented in Table 7,
according to the TIRA [9] website.

Table 7
Results of the performance of our three submissions on the PAN23 testing dataset (from TIRA)

Submission name Model AUC C@1 F0.5u F1-score Brier Overall

resolving-globe all-MiniLM-L12-v2 0.616 0.572 0.562 0.617 0.746 0.623
reduced-graph all-MiniLM-L12-v2 0.616 0.572 0.562 0.617 0.746 0.623

golden-ottoman all-MiniLM-L12-v2 0.598 0.546 0.55 0.622 0.744 0.612

We submitted three runs on TIRA website: ‘resolving-globe’,‘reduced-graph’, and ‘golden-
ottoman’. All of them use same version of the trained model (all-MiniLM-L12-v2). The first
two runs are the same but, the second run has additional option to take p1 and p2 [described
in section 5.2] as input so that we can modify them. And both of them have the same default
values and they use the chunking technique described in section 4.2. The third run was to see
the effect of soft-chunking on the input data so that there is no sentence split between two
chunks unless it has a number of tokens larger than the max sequence length of the model [256
in our case].

8. Conclusion

In this work, we presented the effectiveness of sentence transformers in the authorship verifica-
tion problem. Based on the result we found that the all-MiniLM-L12-v2 model achieved the best
performance on the validation dataset compared to other models like nli-distilroberta-base-v2
and Stylometric model. These results highlight the effectiveness of sentence transformers in
tackling authorship verification, showcasing the potential of the all-MiniLM-L12-v2 model
for improving the accuracy of such tasks.

https://www.tira.io/
https://www.tira.io/
https://www.tira.io/
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