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Abstract

Idiosyncrasies in human writing styles make it difficult to develop systems for authorship identification

that scale well across individuals. In this year’s edition of PAN, the authorship identification track fo-

cused on open-set authorship verification, so that systems are applied to unknown documents by previ-

ously unseen authors in a new domain. As in the previous year, the sizable materials for this campaign

were sampled from English-language fanfiction. The calibration materials handed out to the partici-

pants were the same as last year, but a new test set was compiled with authors and fandom domains not

present in any of the previous datasets. The general setup of the task did not change, i.e., systems still

had to estimate the probability of a pair of documents being authored by the same person. We attracted

13 submissions by 10 international teams, which were compared to three complementary baselines, us-

ing five diverse evaluation metrics. Post-hoc analyses show that systems benefitted from the abundant

calibration materials and were well-equipped to handle the open-set scenario: Both the top-performing

approach and the highly competitive cohort of runner-ups presented surprisingly strong verifiers. We

conclude that, at least within this specific text variety, (large-scale) open-set authorship verification is

not necessarily or inherently more difficult than a closed-set setup, which offers encouraging perspec-

tives for the future of the field.

1. Introduction

This paper provides a full-length description of the authorship verification shared task at

PAN 2021. This edition was the second task installment in a renewed three-year program on the

PAN authorship track (2020–2022), in which the scope, the difficulty and, the realism of the tasks

are gradually increased each year. After last year’s edition focused on providing participants

with the largest pool of calibration material by far of any previous authorship shared task at

PAN—a technical challenge in its own right—, we sought to improve the difficulty this year by

sampling a fully disjunct test set. This is different to last year’s edition where the overall task

difficulty was kept in check by means of resorting to a closed-set evaluation scenario in which

the test set was restricted to only authors and fandom domains also included in the calibration

set (hence a clever participant could re-cast the task as an attribution task). This year’s test set,
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on the other hand, comes with document pairs of exclusively unseen authors writing in unseen

fandom domains, which results in an open-set or “true” authorship verification scenario, which

is conventionally considered a much more demanding problem than attribution. For the next

year, we planned a consecutive and final “surprise task”, on which more details will be released

in due time.

In the following, we first contextualize and motivate the design choices outlined above. Next,

we shall formalize the task, describe the composition of this year’s test set, and detail the

employed evaluation metrics as well as the three generic baseline systems that were applied as

a point of reference. In the sections following that, we shall briefly discuss the participating

systems through a summary of their respective notebooks and the results of the task in tandem

with a statistical analysis to assess whether pairs of systems in fact produced significantly

different outcomes. In our discussion, we present post hoc analyses—including a comparison

with last year’s results regarding the distribution of scores—, the effect of non-answers, and

the relationship of stylistic and topical similarities. Finally, we assess the contributions of this

year’s edition regarding the closed-set vs. open-set debate and offer an outlook into the future.

1.1. Motivation and Design Rationale

Much of the research in present-day computational authorship identification is implicitly

underpinned by a basic assumption that could be summarized as the “Stylome Hypothesis”. This

hypothesis, seminally formulated by van Halteren et al. [1], states that all writing individuals

would leave a unique stylistic and linguistic “fingerprint” in their work, i.e., a set of stable

empirical characteristics that can be extracted from and identified in a large-enough writing

sample. In the analogy of the human genome, the assumption is that this fingerprint is a

sufficient means to identifying the author of any given writing sample, provided it is long

enough. The Stylome Hypothesis is an attractive working hypothesis, but remains hard to

demonstrate, let alone prove. Experimental studies in the past decades have enabled scholars to

close in on the experimental conditions that must be met for an authorship identification: we

know that texts have to be long enough to be analyzed in the first place and verification across

different text varieties has proven to be very challenging, not to mention issues of collaborative

authorship or copy editors who inject additional stylistic noise. Cases where a reliable set of

candidate authors is already available, are easier to solve than those where such a list cannot be

established.

One general property of human authorship that has emerged in various studies appears to be

its ad-hoc nature: Even within a single genre, textual features that work well to differentiate

author A from a set of peers, might fail to separate author B from the same set of peers. Due to

the many idiosyncracies that occur in an individual’s writing style, this makes it challenging

to develop systems that can be robustly scaled across many different individuals. Modeling

authorial writing style requires bespoke models that are tailored to the characteristics of a single

author or a specific set of authors. These observations tie in with two important scenarios that

are commonly distinguished in the field: closed-set and open-set authorship verification. The

former term describes the situation in which a system is applied to a set of texts by authors who

are already known to the system (as they were seen during the training or calibration phase).

The latter term describes the scenario in which a system is applied to texts whose authors are



(potentially) unknown. This open-set scenario is supposedly much more challenging, since

one would expect verification systems to overfit on textual properties that are significant for

distinguishing this author from their known peers, but which may eventually turn out not to

be a general characteristic of their style and hence not distinguish them from other, unknown

authors.

This state of affairs has clearly motivated and shaped the shared task in authorship identifica-

tion at PAN over the years. In particular, three factors have informed the design of the tasks:

(1) issues of scale, (2) methodological developments, and (3) the ad-hoc nature of authorship.

First of all, to reliably assess the plausibility of the Stylome Hypothesis, much larger corpora are

required than were previously available. It is only in recent years, in fact, that larger datasets

for authorship attribution have become more widespread. This concern relating to scale is

closely related to methodological developments in the field. In the 2018 task overview paper, the

organizers voiced serious concerns about a noticeable lack of diversity in the submitted systems.

Save a few exceptions, most of the systems then took the form of a simple classifier (typically a

linear SVM or decision tree) that was applied to a bag-of-words representation of documents

on the basis of character n-grams and other conventional feature sets. This methodological

dearth was remarkable, since deep (neural) representation learning had already been shaping

the landscape of NLP for several years. Such late adoption of deep neural models for authorship

identification was very likely an immediate result of a lack of sufficient training resources as

are typically required for representation learning (in particular for the data-hungry pre-training

and finetuning of sentence- or document-level embeddings).

2. Authorship Verification

The most central element of authorship analysis is the identification of the document’s au-

thor(s) [2, 3, 4]. In various fields, scholars have been studying how stylistic and linguistic

properties of documents can be harnessed for the achievement of this goal. Because of the

variety in authorial styles, including diachronic and synchronic shifts, progress in the field of

style-based document authentication is hard to monitor, as it requires extensive, transparent,

and repeated benchmarking initiatives [5]. The long-running authorship identification track at

PAN hopes to contribute in this area and has organized tasks on authorship identification in

various guises. The following section offers an overview of the central concepts as an update

on a previously published survey [6]:

• Authorship Attribution: Given a document and a set of candidate authors, determine

who wrote the document (PAN 2011–2012, 2016–2020);

• Authorship Verification: Given a pair (or collection) of documents, determine whether

they are written by the same author (PAN 2013–2015, 2021);

• Authorship Obfuscation: Given a set of documents by the same author, paraphrase

one or all of them so that its author cannot be identified anymore (PAN 2016–2018);

• Obfuscation Evaluation: Devise and implement performance measures that quantify

safeness, soundness, and / or sensibleness of an obfuscation software (PAN 2016–2018).



The formal goal of authorship verification is to approximate the target function 𝜑 : (𝐷𝑘, 𝑑𝑢) →
{𝑇, 𝐹}, where 𝐷𝑘 is a set of documents of known authorship by the same author and 𝑑𝑢 is a

document of unknown or questioned authorship.
1

If 𝜑(𝐷𝑘, 𝑑𝑢) = 𝑇 , then the author of 𝐷𝑘

is also the author of 𝑑𝑢 and if 𝜑(𝐷𝑘, 𝑑𝑢) = 𝐹 , then the author of 𝐷𝑘 is not the same as the

author of 𝑑𝑢. In the case of cross-domain verification, 𝐷𝑘 and 𝑑𝑢 stem from a different text

variety or encompass considerably different content (e.g. topics or themes, genres, registers,

etc.). For the present task, we considered the simplest (and most challenging) formulation of

the verification task, i.e., we only considered cases where 𝐷𝑘 is a singleton, thus only pairs of

two documents are examined. Given a training set of such problems, the verification systems

of the participating teams had to be trained and calibrated to analyze the authorship of the

unseen text pairs (from the test set). We shall distinguish between same-author text pairs (SA:

𝜑(𝐷𝑘, 𝑑𝑢) = 𝑇 ) and different-author (DA: 𝜑(𝐷𝑘, 𝑑𝑢) = 𝐹 ) text pairs. In terms of setup, the

novelty this year was that (1) the authors and (2) the stories’ fandom domains in the test set

were not part of any of the provided calibration materials, which, theoretically speaking, should

make this year’s task more challenging than last year’s.

3. Datasets

Given our aim to benchmark authorship identification systems at a much larger scale, our tasks

in recent years [8, 9] focused on transformative literature, or so-called “fanfiction” [10], a text

variety that is nowadays abundantly available on the internet [11] with rich metadata and

in many languages. Additionally, fanfiction is an excellent source of material for studies of

cross-domain scenarios, since users often publish “fics” ranging over multiple topical domains

(“fandoms”), such as Harry Potter, Twilight, or Marvel comics. The datasets we provided for our

tasks at PAN 2020 and PAN 2021 were crawled from the long-established fanfiction community

fanfiction.net. Access to the data can be requested on Zenodo.
2

The 2021 edition of the

authorship verification task built upon last year’s [7] with the same general task layout and

training data, but with a conceptually different test set. We retained the overall cross-domain

setting, in which the texts in a pair stem from different fandoms, but we replaced the closed-set

setting with an open-set setting, where both the authors and the fandoms in the test set are

entirely “new” and do not occur in the training set.

The training resources were identical to those from last year and came in a “small” and a

“large” variant. The large dataset contains 148,000 same-author and 128,000 different-author

pairs across 1,600 fandoms. Each single author has written in at least two, but not more than

six fandoms. The small training set is a subset of the large training set with 28,000 same-author

and 25,000 different-author pairs from the same 1,600 fandoms. The new test was sampled with

the same general strategy (19,999 text pairs in total), but in a way so as to fulfill the previously

described open-set constraints to make the task—at least in theory—more difficult.

1

This paragraph is based on last year’s overview paper [7] and included for the sake of completeness.
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4. Evaluation Framework

For each of the 19,999 problems (or document pairs) in the test set, the systems had to produce

a scalar score 𝑎𝑖 in the range [0, 1] indicating the (scaled) probability that the pair was written

by the same author (𝑎𝑖 > 0.5) or different authors (𝑎𝑖 < 0.5). Systems could choose to leave

problems they deemed too difficult to decide unanswered by submitting a score of precisely

𝑎𝑖 = 0.5. Such a non-answer is rewarded by some of the metrics over a wrong answer.

4.1. Performance Measures

Similar to year, we adopted a diverse mix of evaluation metrics that focused on different

aspects of the verification task at hand. We reused the four evaluation metrics from the 2020

edition, but also included the (complement of the) Brier score [12] as an additional fifth metric

(following discussions with participants and audience from the 2020 workshop
3
). The following

performance measures were used:

• AUC: the ROC area-under-the-curve score,

• c@1: a variant of the conventional accuracy measure, which rewards systems that leave

difficult problems unanswered [13],

• F1: the well-known F1 performance measure (not taking into account non-answers),

• F0.5𝑢: a newly-proposed F0.5-based measure that emphasizes correctly-answered same-

author cases and rewards non-answers [14],

• Brier: the Brier score (more precisely: the complement of the Brier score loss function [12]

as implemented in sklearn [15]), a straightforward, strictly proper scoring rule that

measures the accuracy of probabilistic predictions.

The inclusion of the Brier score was an addition which was meant to measure the probabilistic

confidence of the verifiers in a more fine-grained manner. This metric rewards verifiers that

produce bolder but correct scores (i.e., 𝑎𝑖 close to 0.0 or 1.0). Conversely, the metric would

indirectly penalize less committal solutions, such as non-answers (𝑎𝑖 = 0.5).

To produce a final ranking for a system, we used the mean score across all individual measures.

4.2. Baselines

In total, we provided three baseline systems (calibrated on the small training set) for com-

parison, of which the first two were also employed during last year’s competition. These

were a compression-based approach [16] and a naive distance-based, first-order bag-of-words

model [17]. Both were made available to participants at the start. The third baseline was a

post-hoc addition for this overview paper and consisted of a short-text variant of Koppel and

Schler’s unmasking [18, 19], which had yielded good empirical results in the recent past.

3
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5. Survey of Submissions

The authorship verification task received 13 submissions from 10 participating teams. In this

section, we provide a short and concise overview of the submitted systems. For further details

(including bibliographic references), we refer the interested reader to the full versions of these

notebooks. Teams were allowed to hand in exactly one submission per training dataset (large

and small). Three teams submitted two systems, the other teams either deliberately chose to

submit only a single variant or were unable to produce a valid run in time. The systems listed

below are described in the order in which the notebooks were initially submitted.

1. ikae21 [20] used a hard majority-voting ensemble that incorporated five different

machine-learning classifiers (i.e., linear discriminant analysis, gradient boosting, ex-

tra trees, support vector machines, and stochastic gradient descent). The features used

were top-800 TF-IDF-weighted word unigrams.

2. menta21 [21] exploited two types of stylometric features, character n-grams and punc-

tuation marks, to train a neural network on each type of feature separately. The outputs

were concatenated and fed into another neural network in order to obtain the predictions.

3. liaozhihao21 [22] used four retrieval models from the Lucene framework. Each retrieval

model assigned a probability to a piece of text that it was written by the corresponding

author. Later on, a weighted average of the probabilities was calculated to get the final

score. The approach assumes that both texts were written by the same author if the

highest final score corresponds to the same author.

4. weerasinghe21 [23] extracted stylometric features from each text pair and used the

absolute differences between the feature vectors as input to the logistic regression classifier.

The features included character and POS n-grams, special characters, function words,

vocabulary richness, POS-tag chunks, and unique spellings.

5. boenninghoff21 [24] presented a hybrid neural-probabilistic end-to-end framework,

which included neural feature extraction and deep metric learning, deep Bayes factor

scoring, uncertainty modeling and adaptation, a combined loss function, and additionally

an out-of-distribution detector for defining non-responses. In the final step, the model

was extended to a majority-voting ensemble.

6. peng21 [25] proposed an approach that split the texts into fragments and used BERT to

extract feature vectors from each fragment, which were then concatenated and fed into a

neural network for the final predictions.

7. futrzynski21 [26] proposed an approach based on the cosine similarities of output rep-

resentations extracted from BERT. These similarities were compared to several thresholds

and were rescaled in order to classify a text pair. The BERT model was trained on the

following tasks: masked language modeling, author classification, fandom classification,

and author-fandom separation. In addition, the authors proposed a method for decreasing

the computational costs by combining embeddings of many short text sequences.

8. embarcaderoruiz21 [27] proposed a novel approach consisting of a graph representation

to represent the texts, which served as input to a Siamese network. The feature extraction

network consisted of node embedding layers to obtain vector representations for each



Table 1
System rankings for all PAN 2021 submissions across five evaluation metrics: AUC, c@1, F1, F0.5𝑢,
Brier, and an overall mean score (as the final ranking criterion). The dataset column indicates which
calibration dataset was used. Bold digits reflect the per-column maximum. Horizontal lines indicate
the range of scores yielded by the baselines (in italics).

Team Dataset AUC c@1 F1 F0.5𝑢 Brier Overall

boenninghoff21 large 0.9869 0.9502 0.9524 0.9378 0.9452 0.9545
embarcaderoruiz21 large 0.9697 0.9306 0.9342 0.9147 0.9305 0.9359
weerasinghe21 large 0.9719 0.9172 0.9159 0.9245 0.9340 0.9327
weerasinghe21 small 0.9666 0.9103 0.9071 0.9270 0.9290 0.9280
menta21 large 0.9635 0.9024 0.8990 0.9186 0.9155 0.9198
peng21 small 0.9172 0.9172 0.9167 0.9200 0.9172 0.9177
embarcaderoruiz21 small 0.9470 0.8982 0.9040 0.8785 0.9072 0.9070
menta21 small 0.9385 0.8662 0.8620 0.8787 0.8762 0.8843
rabinovits21 small 0.8129 0.8129 0.8094 0.8186 0.8129 0.8133
ikae21 small 0.9041 0.7586 0.8145 0.7233 0.8247 0.8050

unmasking21 small 0.8298 0.7707 0.7803 0.7466 0.7904 0.7836
tyo21 large 0.8275 0.7594 0.7911 0.7257 0.8123 0.7832
naive21 small 0.7956 0.7320 0.7856 0.6998 0.7867 0.7600
compressor21 small 0.7896 0.7282 0.7609 0.7027 0.8094 0.7581

futrzynski21 large 0.7982 0.6632 0.8324 0.6682 0.7957 0.7516
liaozhihao21 small 0.4962 0.4962 0.0067 0.0161 0.4962 0.3023

node in the graph as well as a global pooling. The authors also incorporated stylometric

features, combining them with the graph components to an ensemble.

9. tyo21 [28] used BERT within a Siamese network. The embedding space was optimized

so that texts written by the same author are adjacent in that space, while texts written by

different authors are farther apart. At inference time, the distance between embeddings

was compared to a threshold (selected based on a grid search) to make the predictions.

10. rabinovits21 [29] relied on regression models. The authors incorporated the cosine

distance for a set of vector-based features (word-, and character frequencies, POS tags,

POS chunk n-grams, punctuation, stopwords) and absolute differences for scalar features

(vocabulary richness, average sentence length, Flesch reading ease score) as measures of

text-pair similarity. The concatenated similarity scores were used as input to a random

forest model (adapted as a regressor).

Overall, we observe a healthy diversity of methods, with several novel approaches, for instance

from representation learning with neural networks, appearing among more established methods

from text classification or information retrieval. Multiple teams employed a so-called “Siamese”

neural network approach [30], which seems to be a natural choice for the analysis of text pairs.

6. Evaluation Results

Table 1 offers a tabular representation of the final results of the submitted systems on the

PAN 2021 test set. The overall ranking is based on the mean performance of the five evaluation

metrics (last column). The dataset column indicates whether a system was calibrated on the

“large” or “small” dataset. In the following, we refer to these as “large” and “small” systems or



Table 2
Significance of pairwise differences in F1 scores between submissions. Notation: ‘=’ (not signifi-
cant: 𝑝 ≥ 0.05), ‘*’ (significant with 𝑝 < 0.05), ‘**’ (significant with 𝑝 < 0.01), ‘***’ (significant
with 𝑝 < 0.001).
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boenninghoff21-large *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
embarcaderoruiz21-large * = *** ** *** *** *** *** *** *** *** *** *** ***
weerasinghe21-large *** *** = *** *** *** *** *** *** *** *** *** ***
weerasinghe21-small *** *** *** *** *** *** *** *** *** *** *** ***
menta21-large *** *** *** *** *** *** *** *** *** *** ***
peng21-small *** *** *** *** *** *** *** *** *** ***
embarcaderoruiz21-small *** *** *** *** *** *** *** *** ***
menta21-small *** *** *** *** *** *** *** ***
rabinovits21-small *** *** *** *** *** *** ***
ikae21-small *** * *** *** *** ***
unmasking21-small *** *** *** *** ***
tyo21-large *** *** *** ***
naive21-small = *** ***
compressor21-small *** ***
futrzynski21-large ***

submissions. In Table 2, we show a pairwise comparison of all combinations of systems to assess

whether their solutions are significantly different from each other (based on their F1 scores).

The statistical procedure we applied for this is the approximate randomization test [31], for

10,000 bootstraps per comparison.

The top-performing system this year was contributed by the participant who submitted

last year’s strongest system. Team boenninghof21 achieved an exceptionally solid and robust

performance, including the overall highest score across all evaluation metrics. The team in first

place is followed by a tight cohort of strong runner-ups (embarcaderoruiz21, weerasinghe21,

menta21, and peng21) who all achieved similar scores in the same ballpark. With the exception

of three systems (tyo21, futrzynski21, liaozhihao21), most approaches significantly outper-

formed the three (unoptimized) baselines. The baselines themselves all yielded surprisingly

similar performances, with unmasking21 being the best-performing baseline with a slight edge.

Somewhat surprisingly, the system by tyo21 turned out to not be significantly different from

the unmasking baseline, although it was based on a completely different verification approach.

For most systems, the pairwise F1 scores significantly differ (Table 2), though in the upper

echelons we see a few exceptions. This is to be expected with such exceptional (and hence

necessarily similar) performances. The top-performing approach did, in fact, produce a signifi-

cantly different solution from the runner-up, though the same is not true for all systems in the

next cohort, which indicates that their particular ranking order does not necessarily indicate

their quality, but incorporates a certain amount of chance. Some participants did well for some



scoring metrics, but showed a more pronounced drop in others. The system by ikae21 for

instance, achieved a more than respectable AUC in the lower nineties, but an F0.5𝑢 only in the

lower seventies (which should primarily be attributed to the different treatment of same-author

pairs by this metric). Overall, the non-responses played an important part in the rankings,

primarily affecting the c@1 and F0.5𝑢 scores. Systems such as liaozhihao21-small, that delivered

binary answers without any non-responses were at a clear disadvantage in this regard.

Of particular importance is the observation that if teams submitted separate systems for

the large and the small dataset, they invariably yielded significantly different solutions. Most

importantly, the “large” variant always outperformed the “small” one. It should be emphasized

that last year, the stronger performance of the large systems might could have been attributed

to the closed-set scenario, in which a sufficiently complex model could have fully memorized

each author’s individual characteristics. This effect cannot serve as an explanation in this

year’s edition, because none of the test set authors or fandoms were present in the calibration

materials. The performance improvements this year must therefore be attributed to the mere

scope or size of the dataset or other characteristics not pertaining directly to the individual

authors. This serves as additional evidence that systems were generally able to benefit from

the increased training dataset size and could capitalize on accessing more abundant and more

diverse material by more authors, even in an open-set verification scenario. It also signals clearly

that the supposed ad-hoc nature of authorship identification should not be over-estimated.

At least within a single textual domain, the results demonstrate the feasibility of modeling

authorship quite reliably and at a large scale.

7. Discussion

In this section, we provide a more in-depth analysis of the submitted approaches and their

evaluation results, also in comparison with last year’s task. First, we take a look at the distribution

of the submitted verification scores, including a meta classifier. We go on to inspect the effect

of non-responses, and finally try to analyze how topic similarities between texts in a pair might

have affected the results.

7.1. Comparison 2020–2021

Due to the intricate similarities and differences between the 2020 and 2021 editions of the

task, a more detailed comparison is worthwhile. A clear advantage of the software submission

procedure through tira.io is that we were able to rerun the systems from one year on the test

dataset of another year in most cases. This way we were able to perform a cross-evaluation of

quite a few systems with some exceptions due to unresolvable failures when running systems

on datasets which they were not designed for. These were mostly a result of hard-coded

assumptions that were violated by the new data. For example, several 2020 systems assumed

all fandoms in the test set to be known, which was in clear violation with the 2021 dataset

design. In Table 3, we present the performance of these system and data combinations in terms

of c@1. This comparison is necessarily incomplete but allows us to glean some interesting

trends. Across systems, the scores for the 2020 dataset are consistently lower than for 2021

in all instances but one (ikae). We must therefore draw the counter-intuitive conclusion that



Table 3
Cross-comparison of the performances (in terms of c@1) across different combinations of submissions
(2020 vs. 2021) and test datasets (also 2020 vs. 2021). Some combinations could not be evaluated due to
failures when running the system on a dataset it was not designed for.

Team 2020 System 2021 System

2020 Data 2021 Data 2020 Data 2021 Data

niven 0.786 – – –
araujo 0.770 0.81 – –
boenninghoff 0.928 – 0.917 0.950
weerasinghe 0.880 0.913 0.885 0.917
ordonez 0.640 – – –
faber 0.331 – – –
ikae 0.544 0.503 0.742 0.758
kipnis 0.801 0.815 – –
gagala 0.786 0.804 – –
halvani 0.796 0.822 – –
embarcaderoruiz – – 0.914 0.930
menta – – 0.878 0.902
peng – – – 0.917
rabinovits – – 0.795 0.812
tyo – – – 0.759
futrzynski – – 0.662 0.663
liaozhihao – – – 0.496

the open-set formulation with unseen authors and topical domains was, in fact, easier to solve

than the closed setting. On the other hand, the new 2021 systems tended to underperform on

the 2020 dataset in comparison with the original 2020 submission by the same team—at least

in the preciously rare cases in which we were able to make this comparison (i.e., boeninghoff,

weerasinghe, ikea).

7.1.1. Distributions

Figure 7.1.1 (left) visualizes the overall distribution of the submitted answers for the systems

that outperformed the baselines (best-performing system per team). We see a clear trimodal

distribution with peaks around 0, 0.5 and 1, respectively. We noticed that systems submitted

“bolder” answers than last year, i.e., only few answers lie in between the three peaks. The

middle peak around 0.5 leads to the assumption that some systems deliberately optimized for

non-responses. This assumption is further supported by Figure 7.1.1 (right), which shows the

same observation, but broken down by individual systems.

In Figure 2, we plot the precision-recall curves for the above-mentioned submissions, including

that of a naive meta classifier that predicts the mean score over all systems (dotted line). Whereas

in previous years, the meta-classifier often suffered from a lack of methodological diversity in

participant systems, this year, the mean verification score outperforms most individual systems.

Nevertheless, while the meta classifier can compete with boenninghoff21 in terms of precision,

it clearly falls short with regards to recall.
4

4

Meta classifier performance: AUC: 0.917, c@1: 0.917, F1: 0.916, F0.5𝑢: 0.919, Brier: 0.917, Overall: 0.917.
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formed the baselines.

7.1.2. Non-answers

Non-answers were an integral aspect of the evaluation procedure. In the submitted scores,

but also in the participants’ notebooks, we observed that particularly returning participants,
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Figure 3: The c@1 scores per system as a function of the absolute number of non-answers.

such as boenninghoff21 and ikae21 took greater care to fine-tune this aspect of their systems

(and were indeed successful in doing so). The different systems used non-responses to varying

degrees. In Figure 3, we plot the c@1 performance as a function of the absolute number of

non-responses per system. We see that futrzynski21 returned overall the most non-responses,

though at the cost of a below-baseline performance. The three baselines, too, gave non-answers

in comparably many cases, but were convincingly outperformed by most participant systems.

The top-performing systems (boenninghoff21, embarcaderoruiz21) refused to answer cases to

a more moderate degree, resulting in an overall very good performance. Many of the other

high-ranking systems, such as weerasinghe21, menta21, or peng21, appeared as if they did

not pay particular attention to optimizing for this aspect of the task and submitted only very

few non-answers, if any. We performed a paired, non-parametric Wilcoxon signed-rank test

(𝑛 = 16) to assess whether the number of non-responses of a system (including the baselines)

correlated positively with its c@1 score. The result (𝑊 = 28.0; 𝑝 = 0.019) offers some ground

to accept this positive correlation and thus supports the hypothesis that it generally paid off for

systems to submit non-answers for difficult cases.

Like last year, these observations raise the question as to which extent boenninghoff21’s



Table 4
Evaluation results for top-performing systems (one per team), excluding any test problems for which
boenninghoff21-large submitted a non-response (𝑎𝑖 = 0.5).

Team Dataset AUC c@1 F1 F0.5𝑢 Brier Overall

boenninghoff21 large 0.991 0.957 0.952 0.976 0.963 0.968
embarcaderoruiz21 large 0.977 0.946 0.947 0.927 0.942 0.948
weerasinghe21 large 0.979 0.934 0.930 0.932 0.944 0.944
menta21 large 0.971 0.920 0.913 0.926 0.930 0.932
peng21 small 0.929 0.929 0.925 0.925 0.929 0.928

competitive edge can be attributed to the system’s ability to correctly identify such difficult

cases in order to leave them unanswered. Table 4 summarizes the performances of the top

systems (one per participant) on all cases on which boenninghoff21 submitted a score of

𝑎𝑖 ̸= 0.5. Interestingly, the differences in performance stay the same, as well as the ranking,

which indicates that the treatment of difficult cases is not the only magic ingredient (we

should emphasize boenninghoff21’s exceptional F0.5𝑢 score on this subset; indicating that they

primarily backed off for different-author document pairs).

7.1.3. The Influence of Topic (continued)

In last year’s overview paper, we applied a generic topic model to analyze the test problems

from a semantic perspective. To avoid repetition, we will not reintroduce this model (non-

negative matrix factorization with 150 dimensions applied to a TF-IDF-normalized bag-of-words

representation of content words) at length, but it remains an interesting challenge to analyze this

year’s test data from the same topical perspective. We applied the same pipeline to this year’s

test data for assessing topic similarities between the document pairs, in which we calculated

the cosine similarity between the L1-normalized topic vectors for each document. Overall,

the topical distances over all the document pairs in both the 2020 and 2021 test sets show a

very similar distribution (2020: 𝜇 = 0.656, 𝜎 = 0.147; 2021: 𝜇 = 0.641, 𝜎 = 0.153). This is

reassuring, as it show that while both datasets are cross-fandom, the open-set vs. closed-set

reformulation did not introduce any obvious topical artifacts.

Generally speaking, all of the trends reported last year also hold on this year’s test set:

1. Same-author pairs displayed a higher topical similarity then different-author pairs, indi-

cating that authors do have an inclination to write about the same topics (see Figure 4

(left)). A non-parametric (one-sided, but unpaired) Mann-Whitney 𝑈 test (𝑛1 = 10, 000,

𝑛2 = 9, 999) lends support to this view (𝑈 > 68, 687𝐾 , 𝑝 < 0.001).

2. There is a mild but real correlation between the topical similarity of a document pair in a

test problem and the average verification score submitted by systems.

3. Results for the standard linear regression model reported last year were: 𝛽 = 0.16,

𝑅2 = 0.15. When limited to the correctly answered cases of the meta classifier, the

resulting model this year is comparable (𝛽 = 0.16, 𝑅2 = 0.15), but for the incorrect

predictions, the coefficients markedly drop (𝛽 = 0.09, 𝑅2 = 0.01).
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Figure 4: Left: Distribution of topical similarity, separate for same-author and different-author pairs.
Right: The distribution of topical similarity within document pairs in the test set for same-author and
different-author pairs broken down by whether the meta-classifier answered the pairs correctly.

All in all, we can hypothesize that this year again, the models were generally susceptible

to a misleading influence of topic similarity, as indicated by Figure 4 (right): Correctly solved

different-author pairs tended to be of lower topical similarity than those answered incorrectly.

Same as last year, this relationship was reversed for the same-author pairs. Thus, topical

information can be very useful for authorship verification, but it cannot necessarily be taken at

face value.

8. Outlook

Last year’s edition proved to be a turning point in the history of the authorship identification

track at PAN: Through the release of large-scale calibration materials, the performance of

authorship models could, for the first time, be benchmarked on a scale sufficient for deep

representation learning. This stimulated the adoption of new neural models which produced

competitive and, in some cases, outstanding results. Interestingly, this size increase did attract

new participants, while at the same time, some of the regular participants from previous years

found the sudden increase in data size rather intimidating and struggled in the adaptation

of their pre-existing systems to the new data. To counteract this effect and to maximize the

inclusivity of our initiative, the separate submission of systems trained on the small and on the

large dataset variant was introduced.

Another critical change compared to previous installments was the fact that the new dataset

was limited to English-language documents only, a mere result of the availability of the source

material. While we assume that most systems would also generalize to other (at least European)

languages, we are aware that this might be a potential source of bias and it remains to be seen

to which extent exactly the results reported here will be reproducible in other (more heavily

inflected) languages. Also, the effect of (potentially very many) non-native speakers of English

that appear as authors in the data is hard to quantify at this time. To the best of our knowledge,

very few studies have looked at authorship identification across different writing languages.

One might hypothesize that authors, when active in their native language, will demonstrate



greater mastery and diversity of style, while in a second language, less refined writing and

typical errors might increase their identifiability. Another deserving field for future studies is the

comparison of fanfiction material that was exclusively written by authors who self-identify as

(non-professional) “fans”—hence received very little (if any) moderation or editing—to writing

samples by professional authors.

In spite of these critical remarks, the central take-away message from this year’s shared task

remains positive: Modern, large-scale authorship verification systems can perform extremely

well within the fanfiction domain. Contrary to our expectations, recasting last year’s task

as an open-set setup did not degrade, but in fact improve their performance. Most systems

were more than capable to accurately answer the cases, even though none of the authors and

fandoms were seen in the training data. This is highly encouraging, though it remains to

be seen whether this holds true for other textual domains outside of transformative fiction.

In light of the outstanding results, we should certainly raise the uncomfortable question of

whether cross-domain authorship verification in the fanfiction domain is simply too easy.

Perhaps the variance between different fandoms is limited (e.g., due to a focus on erotic and

pornographic content [32]) and should thus not be taken as a proxy for domain differences in

other text varieties. Nevertheless, the findings demonstrate that the issue of the ad-hoc nature

of authorship identification can be overcome, at least within a single textual domain, which is

certainly a positive and encouraging message.
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