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Abstract
PAN is a series of scientific events and shared tasks which focuses on digital text forensics and stylometry.
In previous editions of PAN, the effectiveness of authorship verification technology in several languages
and text genres was tackled, and this year the content shifted to cross discourse type pairs of text. The
purpose of this paper is to test various Transformer based encoder models, using Cross encoder and
Bi-Encoder approaches. The results illustrate a decent performance, reaching an F1 score of 80% on
the best model. Further experimentation was performed on the training dataset, which resulted in no
positive outcome.
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1. Introduction

This paper presents our approach for the Authorship Verification Shared Task [1] at PAN 2022
[2]. The goal of the task is to decide whether two texts have been written by the same author
based on comparing their writing styles. Compared to the tasks in previous editions, this
year’s aim is to focus on more challenging scenarios, as this will allow studying the ability
of stylometric approaches to capture authorial characteristics even when different discourse
types are imposed. Discriminating between documents by stylometric means, could indicate
significant boosts in the area of Cyber Security and Criminology. Moreover, people producing
or writing hate speech on social platforms anonymously could be identified from even their
business emails if the task is successfully solved thus, they can be held accountable.

The dataset contains essays, emails, text messages and business memos in English. The
purpose of this task is to develop a method that will compare a pair of texts consisting of
different discourse types and to predict whether they are written by the same author or not.

After analyzing related work, we have decided to follow a transformer-based approach since
it is widely and successfully used in Natural Language Processing. Our goal is to experiment
with a wider variety of transformer models than what has been tested before.

2. Related Work

[3] gives an overview of the approaches from last year’s instance of the PAN CLEF author
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verification task. Successful methods and their maximum performance on an identical task
and evaluation metric as this year’s task are presented, with differences in context in the data
set. [4] concludes that best performance is achieved by combining heterogeneous methods,
for instance, applying machine learning techniques such as decision trees and artificial neural
networks.

[5] aims to analyze the problem of correlating the author’s characteristics with the attributes
of documents written by that same author. They highlight that the first step should be identifying
the essential feature in the text to conduct a better analytic phase. Once the relevant features
are extracted from a document, different methods can be experimented with to identify the
author. This was useful for their implementation of SVMs and Random Forests.

Transformer-based architectures have been experimented with on earlier versions of this
task, but were limited to using BERT. In [6], a pre-trained model of Bert was presented as a
solution for encoding text information of text pairs. Data-record splitting was introduced to
create short texts that can be encoded by BERT, achieving the highest c@1 and F1-score on
PAN Authorship Verification datasets.

3. Material and Methods

3.1. An overview on the dataset

The provided dataset contains 12,264 pairs, from which 10,424 (85%) are used for training and
the rest for validation. Furthermore, the dataset comes with many peculiarities. A correlation
between authors is challenging because the texts come from different writing scenarios. For
example, most people follow a formal way of writing business memos. As a result, it is more
difficult to find stylistic similarities between e-mails and business memos and text messages or
essays, even if a pair is written by the same author.

When using transformers, the common practice is to encode the dataset in its original form
without applying much preprocessing. After comparing emails and texts, we decided to remove
HTML character artifacts as they do not contribute to authorship verification from a stylometric
point of view. Since the Roberta model uses byte pair encoding, we suspected that the HTML
characters would artificially increase a pair’s dissimilarity.

3.1.1. Distribution of Text Length

First, an exploratory data analysis of the given dataset was conducted. The overall text length
distribution at word level and the distribution of different types of text lengths is shown in
Table 1 and Figure 1. This illustrates the necessity of assigning a high maximum length for
tokenization, including padding and truncation.

The box plot shows that the length of the different discourse types varies greatly. The ‘essay’
type is much longer than the others, and the ‘text message’ type is the shortest.



Overall Essay Text_Message Email Memo

mean 410 1718 96 1718 220
min 31 240 63 240 31
25% 96 1217 87 1217 169
50% 289 1603 93 1603 212
75% 363 2254 100 2254 292
max 3270 3270 474 3270 416

Table 1
Length of different types of text.
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Figure 1: Box plot of the text length distribution of different text types. Granularity of counting is at
the word level. Logarithmic scaling was applied to the 𝑥-axis.

3.1.2. Statistics for Pairs

To better understand the dataset, an analysis was performed at the discourse type (DT) level
and the similarity was calculated for each of them – see table 2. Here, texts are encoded with
the S-BERT model.

3.2. Encoder Experiments

The aim of our submission is to test pre-trained models of different architectures. These models
are to be fine-tuned to this task using the dataset provided. For text comparison tasks such as
semantic similarity or author verification, two approaches are popular: the Bi-Encoder and the
Cross Encoder approach. These architectures are considered to be particularly powerful for
similarity tasks.

MPNet [7] is trained using permuted language modeling and claims to gain a better un-
derstanding of bidirectional contexts, which may prove crucial for a text similarity task. The



Discourse Type Pairs (DT) # Pairs # Identical Authors Mean Similarity

essay, email 1618 809 0.4850
email, text_message 7484 3742 0.6127
essay, text_message 1182 591 0.4803

memo, email 1014 507 0.4952
memo, text_message 780 390 0.5459

essay, memo 186 93 0.4161

Table 2
Analysis on each DT combination. ‘Mean Similarity’ is the mean of cosine similarity of all pairs in each
DT combination.

Roberta models [8] that we used were already fine-tuned on similarity tasks, thus enabling the
transfer of text similarity knowledge to our task. Therefore, we expect that the training time will
be shorter and the performance will be better. The pretrained model configurations are shown
in Table 3. The maximum length in Bi-Encoder models is 256, which is half of Cross-Encoder
because Bi-Encoders encode two sentences separately: limiting the context to two 256 subtoken
sequences, which are then concatenated. Note that for the experiments, only the pre-trained
base models with a maximum text length of 512 subtokens were used.

Encoding Approach Models Max. Subtokens Epochs Batchsize

Cross Encoder BertForNextSentencePrediction 512 8 16
Cross Encoder Roberta-Muppet 512 5 6
Cross Encoder Roberta-stsb 512 5 6

Bi-Encoder MPNET 256 5 12
Bi-Encoder Roberta-Muppet 256 5 12

Table 3
Details about the tested pretrained models. ‘Max.Subtokens’ is the value of hyperparameter ‘max_length’
in tokenizer. ‘Batchsize’ is the size of the batch used in training.

3.2.1. Cross-Encoder Approach

In the Cross-Encoder architecture, both texts are simultaneously fed through a transformer
network. In this architecture, a single encoding for both texts is used for classification (see
Figure 2 on the right). Cross-Encoders are normally used when you have a pre-defined set of
text pairs that you want to score. Cross-encoders usually outperform Bi-Encoders, but do not
scale well with large datasets. That’s why Cross-Encoders seem suitable for our task.

For the Cross-Encoder approach, we used several Roberta models: Roberta-Muppet, Roberta
fine-tuned on the STSB task [9], and plain BERT that was trained with the Next Sentence
Prediction Task [10].



3.2.2. Bi-Encoder Approach

Bi-Encoder architecture creates a twin network that processes two sentences simultaneously in
the same way [11]. All parameters are shared. The pooling layer creates fixed-size representation
for input sentences of varying lengths, while also extracting the features that are considered
the most important ones (see Figure 2 on the left).

For the Bi-Encoder approach, we experiment with Roberta-Muppet and MPNet adding a
pooling and dense layer after the standard encoding step.

3.2.3. Cross-Encoder vs Bi-Encoder Approaches

The main difference between these two architectures is that two sentences are concatenated
in a Cross-Encoder using the SEP special token as a separator. Thus, the encoder can have
attention to information from both sentences, while in the Bi-Encoder architecture, the word
embeddings of the two sentences are encoded separately and then concatenated. In addition,
the Bi-Encoder does not compute attention information between the subtokens of the two texts,
as the embedding process is done separately.

Figure 2: Schematic diagram of the structure of our two different encoder approaches [11]. Illustrated
using a BERT model.

3.3. Dataset Manipulation Experiments

We also experimented with modifying and manipulating the dataset, in particular, splitting
the text segments, negative sampling, and combining these two techniques. The purpose is to
explore whether these techniques improve prediction results.

3.3.1. Splitting Text Segments

Splitting text segments in half results in twice as much data items as before. Since the models
see smaller contexts during training, we hope that shorter but more texts force the model to
better learn authorial characteristics that remain stable across various discourse types.



3.3.2. Negative Sampling

The negative sampling method was initially used to accelerate the training of Skip-Gram models
[12] and has since been widely used in the natural language processing. Negative sampling
serves two purposes: efficiency and effectiveness.

• Efficiency: Negative sampling can reduce the training load by optimizing only the vectors
involved in the cost-finding process.

• Effectiveness: Negative sampling provides high-quality negative examples in a targeted
manner, both to speed up convergence and allow the model to be optimized in the desired
direction.

In this dataset experiment, all authors were mapped with their corresponding texts, and new
pairs of negative data are created by combining texts from different authors.

Our aim was to create a dataset with 20% (6,132) positive samples and 80% (approx. 24,000)
negative samples.

4. Evaluation

To evaluate the proposed models, we use the TIRA evaluation tool [13] with the following
metrics:

AUC: The area-under-the-curve (ROC) score
F1-score: F1 score is the harmonic mean between precision and recall.
c@1: A variant of the F1-score, which rewards systems that leave difficult problems unan-

swered, like scores of exactly 0.5.
F0.5𝑢: A measure that puts more emphasis on deciding same-author cases correctly.
Brier: The complement of the Brier score for evaluating the goodness of (binary) probabilistic

classifiers.

The results of the models trained on this task will then be compared with a set of baseline
results. The baseline results are obtained using a simple method that calculates the cosine
similarities between TFIDF-normalized, bag-of-character-tetragrams representations of the text
pairs. Then the resulting scores are shifted using a simple grid search, to arrive at an optimal
performance on the validation set.

It has to be noted that the validation set across all models are always to be kept the same.

5. Results and Discussion

In Table 4, the results of the trained models are shown. Overall, the models scored decently on
the validation dataset with an overall score mostly higher than 70%, higher than the baseline.
MPNet using the Bi-Encoder approach scored the highest. Its permutation language modeling
turned out to be better than the other models that used masked language modeling in pretraining.

The two Roberta-Muppet models performed similarly, falling right behind MPNet. At the
same time, the two Roberta-Muppet models managed to perform considerably better than the



Model auc c@1 F0.5𝑢 F1 brier Overall

Voting Ensemble 3 Models 0.765 0.759 0.718 0.800 0.759 0.760
Bi-MPNet 0.777 0.771 0.729 0.807 0.771 0.771

Bi-Roberta-Muppet 0.748 0.743 0.708 0.781 0.743 0.745
CE-Roberta-Muppet 0.749 0.744 0.709 0.782 0.744 0.746

CE-Roberta-stsb 0.68 0.672 0.65 0.745 0.672 0.684
CE-BertForNextSentencePrediction 0.705 0.701 0.679 0.724 0.701 0.702

Baseline 0.55 0.5 0.546 0.671 0.749 0.603
Bi-MPNet (on TIRA) 0.577 0.557 0.563 0.581 0.589 0.573

Table 4
Results of each model on the validation set and the best model’s performance on the test set. “Bi-” prefix
represents the Bi-Encoder Architecture & “CE-”prefix represents Cross-Encoder Architecture approach.
The voting ensemble with 3 models includes: Bi-MPNet, Bi-Roberta-Muppet, CE-Roberta-Muppet.
Bolded scores mark the best performance on each metric. Bi-MPNet (on TIRA) was evaluated on the
test set of TIRA.

remaining two models. A possible explanation is that Roberta-Muppet’s multitask pre-training
translated into better stylometric understanding due to its more generalized embeddings.

In Figure 3, an analysis of the predictions of MPNet is shown to check the accuracy results on
all combinations of discourse types on the validation set. The accuracy results range around 75%
across all combinations. What is interesting is that all discourse type combinations achieved a
similar score with marginal differences. Together with the F0.5𝑢 results, this indicates that up to
a certain level, the model managed to learn authorial characteristics across discourse types.

email-text_message essay-email essay-memo essay-text_message memo-email memo-text_message
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Figure 3: Accuracy results on all combinations of discourse types on the validation set.

Further experimentation is reported in Table 5. The models chosen for this analysis were the 3
best performing ones from Table 4. The results show that the dataset manipulation experiments



Model
auc c@1 F0.5𝑢 F1 brier overall

SPLIT NEG S.-N. SPLIT NEG S.-N. SPLIT NEG S.-N. SPLIT NEG S.-N. SPLIT NEG S.-N. SPLIT NEG S.-N.

Bi-MPNet 0.689 0.499 0.501 0.689 0.499 0.501 0.674 0.555 0.556 0.739 0.666 0.667 0.689 0.499 0.501 0.696 0.544 0.545

Bi-Roberta-Muppet 0.640 0.501 0.672 0.640 0.501 0.672 0.637 0.556 0.658 0.691 0.667 0.742 0.640 0.501 0.672 0.650 0.545 0.684

CE-Roberta-Muppet 0.729 0.696 0.590 0.729 0.696 0.590 0.705 0.676 0.603 0.770 0.756 0.699 0.729 0.696 0.590 0.732 0.704 0.615

Table 5
Results of each model on the validation set on 3 experimental variants: “SPLIT” means splitting text
segments in half (doubling the data item number). “NEG” is negative sampling. “S.-N.” uses both
SPLIT and NEG. “B-” prefix represents the Bi-Encoder approach and “CE-” prefix the Cross-Encoder.
Underlined scores mark the experiment’s (column) highest score and bold-ed scores mark the highest
score of the metric.

did not contribute positively to the stylometric learning of the models. We observe a decrease
in the performance of MPNet. Maybe splitting the data caused its permutation language model
to be less effective given that less information for each shortened text, is encoded.

Negative sampling reduced the performance for all models. This discrepancy could be
attributed to the positive to negative ratio of the dataset, therefore a smaller sample of negative
data could have been better.

Finally, what we observe is that the Cross-Encoder models with Roberta-Muppet are clearly
better than the other two models in the dataset manipulation experiments.

6. Conclusion

In our submission, we tested various pre-trained encoder models using Cross-Encoder and
Bi-Encoder architectures to solve the authorship verification problem of PAN@CLEF 2022. We
conclude that the inherent difficulty of the dataset is the major obstacle because the different
types of discourse require different linguistic expressions, for instance, the considerable dissimi-
larity between business memos and text messages. The results show that a simple approach of
selecting a pre-trained model and fine-tuning it is able to grasp some stylometric information
useful for author verification, but overall the performance is not strong enough to reliably solve
this difficult task.
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