
Style Change Detection by Threshold Based and
Window Merge Clustering Methods

Sukanya Nath1[0000−0003−4210−9090]

University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
sukanya.nath@unine.ch

Abstract. The goal of the Style Change Detection task is to detect
the stylistic changes in a document and exploit them to determine the
number of authors. Our approach is to segment the given document into
chunks of text, called windows. Each window is converted into feature
vectors of words (around 50 features). The mutual distances among the
window feature vectors are measured (using different distance measures
like Matusita, Tanimoto etc.) and fed to two clustering algorithms called
Threshold Based (TBC) and Window Merge (WMC). The number of
clusters yielded correspond to the number of authors. The results of the
two algorithms are then compared against each other and a combined
minimum model.

Keywords: Authorship ·Multiple Authorship · Style Change Detection
· Clustering.

1 Introduction

Multiple authorship detection has long been a fascinating subject of research in
the literary community. Over time, the applications of multiple authorship have
extended into areas like plagiarism detection, forensics and more recently fake
news detection. It has been shown by multiple researchers ([2],[15]), how word
patterns can discern an exclusive personal style. Presence of multiple consistent
personal styles indicate presence of multiple authors.

As part of the CLEF Style Change Detection problem, the model was tasked
to identify how many authors had written a given document or a stream of text.
More details can be found in [17].The dataset was composed of forum posts from
different ‘StackExchange’ network sites. All documents were written in English.
The topics of discussion varied greatly. As the documents were based on forums,
each document was independent of others. Therefore, there were no separate
training sets for each author. In the previous years, viz. 2018 and 2017, the
style change detection problem at CLEF was limited to detecting the presence
or absence of style changes. It is to be noted that the Style Change Detection

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2019, 9-12 Septem-
ber 2019, Lugano, Switzerland.



Table 1. Duplicates in Documents

Documents

Authors with no duplicated sentences Total

1 1142 1273
2 48 325
3 65 313
4 83 328
5 66 307

is a variation of the Authorship Diarization problem introduced in 2016, which
aimed to cluster the contributions of each individual author of a document, when
the number of authors is either known or unknown.

The rest of this paper is organized as follows. Section 2 describes the dataset.
In Section 3 we describe feature extraction, distance measurement and cluster-
ing algorithm. Section 4 shows some of our evaluation results. A conclusion in
Section 5 draws the main findings of our experiments.

2 Corpus

In this section, we perform some preliminary statistics on the data to gain a
comprehensive understanding of the data. A basic statistical overview of the PAN
dataset is provided in Section 2.1 while the effect of duplication is highlighted
in Section 2.2.

2.1 Overall Statistics

The training dataset consists of 2546 documents while the validation set consists
of 1272 documents. The number of authors ranges from 1 to 5. Each document
is composed of responses to a single thread at a forum. The mean number of
tokens was 1570 (median: 1452, sd: 810, min: 339, max: 7042). The punctuations
were preserved and treated as separate tokens.

2.2 Duplicate Sentences

It was observed that certain documents contain duplicate sentences. In Figure 1,
we show a boxplot of duplicated sentences per document, grouped by the number
of authors. It can be noted that for documents with a single author, the number
of duplicates is rather low.

On the other hand, the documents written by multiple authors have varying
number of duplicate sentences. In Table 1, we compare the number of docu-
ments containing no duplicate sentences across different author classes. Since,
the number of duplicate sentences is low for single authors and relatively high
for multiple authors, therefore, the number of duplicate sentence may be used
as a feature in identifying single author documents.



Fig. 1. Number of duplicates grouped by Authors

3 Method

This section details the implementation details of our method. We define our
feature selection methods, distance measures and clustering algorithm.

3.1 Feature Selection and Distance Measures

To preserve the logical document structure, we break down the document into
paragraphs. A window was initially assumed to be equal to a paragraph of text.
However, such a simple approach created highly variable lengths of windows.
Thus, the window tokenizer was modified to merge extremely short paragraphs
(less than 200 chars) with the previous paragraphs. Similarly, large paragraphs
were split into smaller windows to get reasonably length wise balanced windows.

Thereafter, top 50 Most Frequent Tokens (MFT) were selected from each
document (and not the whole corpus). Each window was converted to a feature
vector based on the normalized frequency of the selected tokens. We used the
Matusita [6] distance measure to compare the distances between the window
feature vectors. Say, a document has 4 windows, then a symmetric 4x4 matrix
will be created representing the distance between the windows, as shown in
Table 2.



Table 2. Distance Matrix

W0 W1 W2 W3

W0 0 0.8 0.2 0.55

W1 0.8 0 0.56 0.42

W2 0.2 0.56 0 0.77

W3 0.55 0.42 0.77 0

Fig. 2. Clusters representing dis-
tance between windows

Fig. 3. Distance Representation between
windows

Figure 3 represents the windows as the nodes and the distances among them
as the edges of a graph. Figure 2 shows the corresponding clusters created from
the distance matrix. The two clusters are created based on the smallest distances
between windows

3.2 Algorithm

Our solution used a combination of two algorithms. We introduce a few defini-
tions before introducing the algorithms.

Definitions

– Distance Matrix: A distance matrix represents the distances among all
the windows in a square matrix. The diagonal elements are zero because
they represent the distances between a window and itself. Table 2 shows a
distance matrix representing the relationships in Figure 3. For the purpose
of this paper, we will only deal with symmetric distance matrices.

– Sorted Distance Array: Such an array contains non-duplicated entries
of the distance matrix, sorted in ascending order. In terms of a graph, an
entry in the distance matrix corresponds to the edge distance d between
nodes Wi and Wj . The top right half of the distance matrix (cells of Table 2
highlighted in gray) are extracted and converted to an array of the form (Wi,



Wj , d) where Wi, Wj are windows and d is the distance between them. An
example of sorted distance array is shown in Table 3.

– Cluster: The most similar windows of text are grouped together into clus-
ters. The average distance of a cluster is the sum total of all the distances
between members divided by the number of edges. For example, in Figure 2,
the average distance of cluster 1 is 0.2/1 or 0.2.

– Cluster List: Cluster list contains all the active clusters. Ideally, each cluster
corresponds to an author implying that the author has written the text in
the windows. Therefore, the number of clusters correspond with the number
of authors. However, in some cases, this is not true. For example, it may so
happen that an author has written only a few sentences which are contained
by a single window. Such a window, if sufficiently distant from other clusters,
is likely to be excluded by all clusters. As a result, there is a possibility that
the number of authors calculated is lower than the ground truth. On the
other hand, if the document is broken down into tiny windows, it is possible
that there are too few characters, i.e not sufficient information. As a result,
the distance measurement among such windows will be higher, resulting
in the formation of a higher number of small clusters. Thus the predicted
number of authors is higher than the ground truth.

– Thresholds : The following thresholds are required by the Threshold Based
Clustering algorithm (TBC) to determine if a new member may be added
to an existing cluster or if two clusters may be merged together. Thresholds
ensure that existing clusters expand reasonably.
• Add Window Threshold: A new member may be added to a cluster,

if upon adding the new member, the revised average distance of the
modified cluster is not greater than x% of the average distance of the
existing cluster.

• Merge Cluster Threshold: Two clusters may be merged together, if
the revised average distance of the new cluster is not greater than x% of
the average distance of either of the existing clusters.

However, fixing a certain threshold as discussed above does not take into
account the size of the existing cluster. It may be desirable that, clusters
with only a few members or having a small average distance, expand more
rapidly as compared to larger clusters. Therefore, size of the cluster and its
average distance was used to penalise the respective threshold values of the
clusters. Such an adaptation, helped to customize the threshold according
to the state of the cluster.

Threshold Based Clustering Algorithm The intuition behind the TBC
algorithm is that a good way to start clustering is to select the closest windows in
terms of distance because such windows, are likely to belong to the same cluster.
As such, the distance matrix is transformed into an array sorted by distance, viz.
the sorted distance array or dist arr and fed to the Algorithm 1. The idea is to
select the windows with smallest distances iteratively such that, when forming
a cluster, the closest members are included first. Thereafter, the members that



Algorithm 1 Threshold Based Clustering Algorithm

1: procedure CreateCluster(dist arr) # Convert sorted distance array to
clusters

2: cluster list← φ
3: for all entry e ∈ dist arr do # where e is of the form (Wi, Wj , d)
4: Wi, Wj ← GetWindows(e)
5: if Wi /∈ candWj /∈ c′∀c, c′ ∈ cluster list then # where c is a cluster
6: c← {Wi,Wj}
7: cluster list← cluster list ∪ c
8: end if
9: if ∃ c′ : c′ ∈ cluster list and Wi ∈ c′ andWj /∈ c ∀c ∈ cluster list then

10: c′′ ← c′ ∪ {Wj}
11: if average distance(c′′) < add node threshold then
12: c′ ← c′′ # cluster c’ is updated by adding a new Window Wj

13: end if
14: end if
15: if ∃ c′ : c′ ∈ cluster list and Wj ∈ c′ andWi /∈ c ∀c ∈ cluster list then
16: c′′ ← c′ ∪ {Wi}
17: if average distance(c′′) < add window threshold then
18: c′ ← c′′ # cluster c’ is updated by adding a new Window Wi

19: end if
20: end if
21: if ∃ c, c′ : c, c′ ∈ cluster list and Wi ∈ c and Wj ∈ c′ then
22: c′′ ← c ∪ c′
23: if average distance(c′′) < merge cluster threshold then
24: cluster list← cluster list ∪ {c′′} − {c, c′}
25: # Replace previous smaller clusters with a new merged cluster
26: end if
27: end if
28: end for
29: return len(cluster list) # Number of clusters represent number of au-

thors
30: end procedure



Table 3. Sorted Distance Array

Wi Wj Distance

W0 W2 0.2
W1 W3 0.42
W0 W3 0.55
W1 W2 0.56
W2 W3 0.77
W0 W1 0.8

are further away, are included. Hence the clusters would be expected to grow
from small and dense to large and spread out. Such a growth is controlled by
the thresholds shown in Section 3.2. For each entry in the dist arr, the windows
may have any one of the following conditions:

– None of the windows are present in any existing cluster of the cluster list.
Therefore, a new cluster must be created with these two windows and added
to the cluster list.

– One of the windows is already a member of an certain existing cluster, while
the other isn’t. Thus, the non-member window may be added to an existing
cluster, provided that the Add Window Threshold condition is met. While
adding a new member, all the corresponding edges between the new member
and existing members are extracted from the dist arr and added to the
cluster.

– Both windows belong to two different existing clusters which may be merged
if the conditions of the Merge Cluster Threshold are satisfied. As in the
previous case, all the corresponding edges are added to the cluster

It is to be noted, that the condition that both windows belong to the same
cluster is not possible, as otherwise, such an entry would already have been
traversed while adding new members or cluster merging.

3.3 Window Merge Clustering

The Window Merge Clustering algorithm (WMC) iteratively combines the most
similar windows to generate a new set of windows. From these new windows, the
distance matrix is re-calculated for the next iteration. As a result, the clusters
formed are hierarchical. The idea is to represent each cluster with a combined
representation of all of its members together, rather than individual distances.
Figure 4 shows the formation of the clusters by the Window Merge Clustering.
The height of the cluster corresponds to the distance between the two clusters.
In the first iteration, Cluster1 (W0, W1) is formed and W0 and W1 are com-
bined. The resulting new set of windows are W0W1, W2 and W3. In the next
iteration Cluster2 (W2,W3) is formed. The updated windows are W0W1 and
W2W3. Eventually, these windows are connected in the third iteration resulting
in Cluster3 (W0W1, W2W3).



Fig. 4. Hierarchical Clusters created by WMC

To determine the number of clusters, we use a truncation threshold, which is
a certain percentage of the height of the largest cluster. In this example shown
in Figure 4, the truncation threshold is set to 0.43 or 75% of 0.57 which is the
height of Cluster3. With the help of the truncation threshold, we can control
the size of the clusters. Also, as in the case of the TBC, the number of clusters
relates to the number of authors.

Algorithm 2 Window Merge Algorithm

1: procedure CreateHierarchicalCluster(dist matrix, text windows)
2: window merge order ← φ
3: while size(dist matrix) > 1 do
4: Wi,Wj ← FindMinDistanceWindows(dist matrix)
5: merge order ← window merge order ∪ {Wi,Wj}
6: new text windows←MergeWindows(Wi,Wj , text windows)
7: dist matrix← CalculateDistMatrix(new text windows)
8: end while
9: authors← Truncate(window merge order, truncation threshold)

10: return authors
11: end procedure

4 Evaluation

The Add Window and Merge Cluster thresholds of the TBC algorithm were
varied from 5% to 100%. We observed the optimum performance at 50% for
both the thresholds. In our experiments, both thresholds are set to 50%. We
show the evaluation of our algorithms in Table 4. In addition to TBC and WMC,
we have another model called the combined minimum. The combined minimum
model simply selects the smaller predicted value from either of TBC and WMC
algorithms. In our evaluation, we find that the the TBC performs better than
the WMC and the combined minimum.



In Section 2.2, we proposed the idea of using the number of duplicates sen-
tences to predict the number of authors. We showed how low number of duplicate
sentences were indicative of a single author. We modified the algorithms TBC
and WMC such that, if no duplicate sentences were present in a document, only
a single author was predicted. However, if one or more duplicate sentences were
observed, the algorithm was executed normally. In Table 5, the impact of using
such a feature is shown. We observe that the performances of all the three mod-
els have improved significantly. In Table 5, the results of the test set evaluated
on the TIRA for TBC algorithm are shown.

Table 4. Initial Results

Training set Validation set

Algorithm Name Accuracy OCI Rank Accuracy OCI Rank

TBC 0.66 0.83 0.42 0.65 0.82 0.42

WMC 0.62 0.91 0.35 0.63 0.88 0.37

Combined Min 0.65 0.92 0.36 0.66 0.90 0.38

5 Conclusion

In this paper, we have demonstrated that it is possible to identify the number
of authors from a relatively short piece of text without any training corpus per
author. We have contributed two different algorithms to perform authorship
clustering and now we present the chief findings of our work.

We found that, TBC perfoms the best out of the three models under both
the scenarios. This is because by prioritizing the selection of the smallest dis-
tances, we ensured that the most vital members of a cluster are selected first.
Such members are vital because they lay down the cluster structure. Subsequent
members can only be included if they expand the cluster within a reasonable
limit. We observe that WMC performs only slightly worse, when no information
on duplicate sentences is present. This shows that there is scope of improvement
in the combined representation approach of WMC.

Also, by including the duplicate sentences feature, the performances of the
algorithms were improved by a considerable margin. Since, we have tested us-
ing only one test collection, there may be some unknown dataset characteristic

Table 5. Improved Results using Duplicated Sentences

Training set Validation set Test Set (TIRA results)

Algorithm Name Accuracy OCI Rank Accuracy OCI Rank Accuracy OCI Rank

TBC 0.83 0.87 0.48 0.83 0.85 0.49 0.85 0.87 0.49

WBC 0.72 0.93 0.40 0.74 0.90 0.42 - - -

Combined Min 0.70 0.93 0.39 0.72 0.91 0.41 - - -



favouring one algorithm over another. As part of our future work, one or two
additional datasets would be included for a better evaluation.

Another important part of the window based approaches is to tune the cor-
rect size of the window. Ideally the document should be split such that each
window contains exactly one style change completely. However, is not possible
to know the location of the style changes initially. Hence it is difficult to know
the correct size of a window. A possible improvement of our work could be to
define a measure for cluster quality achieved to be given as a feedback for further
improving the splitting of the windows in an iterative fashion.

The github repository for our approach can be found at [8].

References

1. Burrows, J.: All the way through: testing for authorship in different frequency
strata. Literary and Linguistic Computing 22(1), 27–47 (2006)

2. Craig, H., Kinney, A.F.: Shakespeare, computers, and the mystery of authorship.
Cambridge University Press (2009)

3. Crystal, D.: Language and the internet. Cambridge University Press (2009)
4. Daelemans, W., Kestemont, M., Manjavancas, E., Potthast, M., Rangel, F.,

Rosso, P., Specht, G., Stamatatos, E., Stein, B., Tschuggnall, M., Wiegmann,
M., Zangerle, E.: Overview of PAN 2019: Author Profiling, Celebrity Profiling,
Cross-domain Authorship Attribution and Style Change Detection. In: Crestani,
F., Braschler, M., Savoy, J., Rauber, A., Müller, H., Losada, D., Heinatz, G., Cap-
pellato, L., Ferro, N. (eds.) Proceedings of the Tenth International Conference of
the CLEF Association (CLEF 2019). Springer (Sep 2019)

5. Harman, D.: How effective is suffixing? Journal of the american society for infor-
mation science 42(1), 7–15 (1991)

6. Jeffreys, H.: Theory of Probability,. OUP Oxford (1948)
7. Kocher, M., Savoy, J.: Distance measures in author profiling. Information Process-

ing & Management 53(5), 1103–1119 (2017)
8. Nath, S.: SCD CLEF 2019. https://github.com/pan-webis-de/nath19 (2019)
9. Pennebaker, J.W.: The secret life of pronouns: What our words say about us.

Bloomsbury Press, New York (2011)
10. Potthast, M., Gollub, T., Wiegmann, M., Stein, B.: TIRA Integrated Research

Architecture. In: Ferro, N., Peters, C. (eds.) Information Retrieval Evaluation in a
Changing World - Lessons Learned from 20 Years of CLEF. Springer (2019)

11. Potthast, M., Rosso, P., Stamatatos, E., Stein, B.: A decade of shared tasks in
digital text forensics at pan. In: European Conference on Information Retrieval.
pp. 291–300. Springer (2019)

12. Rangel, F., Rosso, P., Montes-y Gómez, M., Potthast, M., Stein, B.: Overview
of the 6th author profiling task at pan 2018: multimodal gender identification in
twitter. Working Notes Papers of the CLEF (2018)

13. Savoy, J.: Comparative evaluation of term selection functions for authorship attri-
bution. Digital Scholarship in the Humanities 30(2), 246–261 (2013)

14. Savoy, J.: Analysis of the style and the rhetoric of the 2016 us presidential primaries.
Digital Scholarship in the Humanities 33(1), 143–159 (2017)

15. Savoy, J.: Is starnone really the author behind ferrante? Digital Scholarship in the
Humanities 33(4), 902–918 (2018)



16. Sebastiani, F.: Machine learning in automated text categorization. ACM comput-
ing surveys (CSUR) 34(1), 1–47 (2002)

17. Zangerle, E., Tschuggnall, M., Specht, G., Potthast, M., Stein, B.: Overview of the
Style Change Detection Task at PAN 2019. In: Cappellato, L., Ferro, N., Losada,
D., Müller, H. (eds.) CLEF 2019 Labs and Workshops, Notebook Papers. CEUR-
WS.org (Sep 2019)


