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Abstract This paper overviews 9 vandalism detectors that have been developed

and evaluated within PAN’10. We start with a survey of 55 different kinds of fea-

tures employed in the detectors. Then, the detectors’ performances are evaluated

in detail based on precision, recall, and the receiver operating characteristic. Fi-

nally, we set up a meta detector that combines all detectors into one, which turns

out to outperform even the best performing detector.
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1 Introduction

Wikipedia allows everyone to edit its articles, and most of Wikipedia’s editors do so for

the best. Some, however, don’t, and undoing their vandalism requires the time and effort

of many. In recent years, a couple of tools have been developed to assist with detecting

vandalism, but little is known about their detection performance, while research on

vandalism detection is still in its infancy. To foster both research and development, we

have organized the 1st competition on vandalism detection, held in conjunction with

the 2010 CLEF conference. In this paper we overview the detection approaches of the

9 participating groups and evaluate their performance.

1.1 Vandalism Detection

We define an edit e as the transition from one Wikipedia article revision to another,

where E is the set of all edits on Wikipedia. The task of a vandalism detector is to

decide whether a given edit e has been done in bad faith or not. To address this task by

means of machine learning three things are needed: a corpus Ec ⊂ E of pre-classified

edits, an edit model α : E → E, and a classifier c : E → {0, 1}. The edit model

maps an edit e onto a vector e of numerical values, called features, where each feature

quantifies a certain characteristic of e that indicates vandalism. The classifier maps these

feature vectors onto {0, 1}, where 0 denotes regular edits and 1 vandalism edits. Some

classifiers map onto [0, 1] instead, where values between 0 and 1 denote the classifier’s

confidence. To obtain a discrete, binary decision from such classifiers, a threshold τ ∈
[0, 1] is applied to map confidence values onto {0, 1}. In any case, the mapping of c is

trained with a learning algorithm that uses the edits in Ec as examples. If c captures the

concept of vandalism, based on α and Ec, then a previously unseen edit e ∈ E \Ec can

be checked for vandalism by computing c(α(e)) > τ .



1.2 Evaluating Vandalism Detectors

To evaluate a vandalism detector, a corpus of pre-classified edits along with detection

performance measures are required. The corpus is split into a training set and a test set.

The former is used to train a vandalism detector, while the latter is used to measure its

detection performance. For this purpose we have compiled the PAN Wikipedia vandal-

ism corpus 2010, PAN-WVC-10 [10]. As detection performance measures we employ

precision and recall as well as the receiver operating characteristic, ROC.

Vandalism Corpus. Until now, two Wikipedia vandalism corpora were available [11,

13], however, both have shortcomings which render them insufficient for evaluations:

they disregard the true distribution of vandalism among all edits, and they have not

been double-checked by different annotators. Hence, we have compiled a new, large-

scale corpus whose edits were sampled from a week’s worth of Wikipedia edit logs. The

corpus comprises 32 452 edits on 28 468 different articles. It was annotated by 753 an-

notators recruited from Amazon’s Mechanical Turk, who cast more than 190 000 votes

so that each edit has been reviewed by at least three of them. The annotator agreement

was analyzed in order to determine whether an edit is regular or vandalism, and 2 391

edits were found to be vandalism.

Detection Performance Measures. A starting point for the quantification of any classi-

fier’s performance is its confusion matrix, which contrasts how often its predictions on

a test set match the actual classification:

Classifier Actual

Prediction P N

P TP FP

N FN TN

In the case of vandalism detectors, vandalism is denoted as P and regular edits as N:

TP is the number of edits that are correctly identified as vandalism (true positives),

and FP is the number of edits that are untruly identified as vandalism (false positives).

Likewise, FN and TN count false negatives and true negatives. Important performance

measures are computed from this matrix, such as the TP rate, the FP rate, or recall and

precision:

recall = TP -rate =
TP

TP + FN

precision =
TP

TP + FP
FP -rate =

FP

FP + TN

Plotting precision versus recall spans the precision-recall space, and plotting theTP

rate versus the FP rate spans the ROC space. The former is used widely in information

retrieval as performance visualization, while the latter is used preferably in machine

learning. Despite the fact that recall and TP rate are the same, both spaces visualize

different performance aspects and they possess unique properties. In Figure 1 the two



Edit Actual Detector A

1 regular 0.93
2 vandalism 0.89
3 vandalism 0.86
4 vandalism 0.83
5 regular 0.79
6 regular 0.76
7 vandalism 0.73
8 vandalism 0.69
9 vandalism 0.66
10 vandalism 0.63

Edit Actual Detector A

11 vandalism 0.59
12 regular 0.56
13 vandalism 0.53
14 regular 0.49
15 vandalism 0.46
16 regular 0.43
17 regular 0.39
18 regular 0.36
19 regular 0.33
20 regular 0.29

(a)

Detector A Actual
Prediction P N

P 8 3

N 2 7

Detector B Actual
Prediction P N

P 6 2

N 4 8

Detector C Actual
Prediction P N

P 7 7

N 3 3

Detector D Actual
Prediction P N

P 2 6

N 8 4

(b)
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Figure 1. (a) A set of test edits, their actual classes, and predictions for them from a vandalism

detector A which employs a continuous classifier. (b) Confusion matrices of four vandalism de-

tectors A, B, C, and D. For A, threshold τ = 0.58 is assumed, whereas B, C, and D employ

discrete classifiers. (c) Precision-recall space that illustrates the performances of the four detec-

tors. The precision-recall curve for A is given. (d) ROC space that illustrates the performances of

the four detectors. The ROC curve of A is given, and for B an ROC curve is induced.

spaces are exemplified. Figure 1a lists 20 test edits along with the fact whether or not

they are vandalism. For a vandalism detector A its predictions with regard to the classes

of every edit are given. Figure 1b shows the confusion matrix of detector A when τ is

set to 0.58 as well as the confusion matrices of three additional detectors B, C, and D.

Note that every confusion matrix corresponds to one point in both spaces; Figures 1c

and 1d show the precision-recall space and the ROC space:

– Precision-Recall Space. The corners of precision-recall space denote extreme cases:

at (0,0) none of the edits classified as vandalism are in fact vandalism, at (1,1) all

edits classified as vandalism are vandalism; close to (1,0) all edits are classified as

vandalism, and close to (0,1) all edits are classified as being regular. Observe that

the latter two points are gaps of definition and therefore unreachable in practice:

when constructing a test set to approach them, the values of the confusion matrix



become contradictory. The dashed line shows the expected performances of detec-

tors that select classes at random. Note that the classifier characteristics shown in

precision-recall space depend on the class distribution in the test set.

– ROC Space. The corners of ROC space denote extreme cases: at (0,0) all edits

are classified as regular, at (1,1) all edits are classified as vandalism; at (1,0) all

edits are classified correctly, at (0,1) all edits are classified incorrectly. The diag-

onal from (0,0) to (1,1) shows the expected performances of detectors that select

classes at random; the ROC space is symmetric about this diagonal by flipping a

detector’s decisions from vandalism to regular and vice versa. Note that classifier

characteristics shown in ROC space are independent of the class distribution in the

test set.

Changing the threshold τ of detector A will lead to a new confusion matrix and,

consequently, to a new point in precision-recall space and ROC space respectively. By

varying τ between 0 and 1 a curve is produced in both spaces, as shown in Figures 1c

and 1d. Note that in precision-recall space such curves have sawtooth shape, while in

ROC space they are step curves from (0,0) to (1,1). In information retrieval, precision-

recall curves are smoothed, which, however, is unnecessary in large-scale classification

tasks, since the class imbalance is not as high as in Web search. By measuring the

area under a curve, AUC, a single performance value is obtained that is independent

of τ . The better a detector performs, the bigger its AUC. Observe that maximizing the

ROC-AUC does not necessarily maximize the precision-recall-AUC [4]. For discrete

classifiers, such as B, the curves can be induced as shown. The ROC-AUC is the same as

the probability that two randomly sampled edits, one being regular and one vandalism,

are ranked correctly. Ideally, AUC values are measured more than once for a detector

on different pairs of training sets and test sets, so that variance can be measured o

determine whether a deviation from the random baseline is in fact significant. Due to

the limited size of the available corpus, and the nature of a competition, however, we

could not apply this strategy.

From the above it becomes clear that detector A performs best in this example,

closely followed by detectors B and D, which perform equally well. Detector C is no

better than a random detector that classifies an edit as vandalism with probability 0.7.

2 Survey of Detection Approaches

Out of 9 groups, 5 submitted a report describing their vandalism detector, while 2 sent

brief descriptions. This section surveys the detectors in a unified manner. We examine

the edit model used, and the machine learning algorithms that have been employed to

train the classifiers.

An edit model function α is made up of features that are supposed to indicate van-

dalism. A well-chosen set of features makes the task to train a classifier that detects

vandalism much easier, whereas a not so well-chosen set of features forestalls a better-

than-chance detection performance. Hence, feature engineering is crucial to the success

of a vandalism detector. Note in this connection that no single feature can be expected

to separate regular edits from vandalism perfectly. Instead, a set of features does the



trick, where each feature highlights different aspects of vandalism, and where the sub-

sequently employed machine learning algorithm is left with using the information pro-

vided by the feature set to train a classifier.

We organize the features employed by all detectors into two categories: features

based on an edit’s content (cf. Table 1) and features based on meta information about

an edit (cf. Table 2). Each table row describes a particular kind of feature. Moreover,

Table 1. Features based on an edit’s textual difference between old and new article revision.

Feature Description References

Character-level Features

Capitalization Ratio of upper case chars to lower case chars (all chars). [6, 9]

Number of capital words. [12, 14]

Digits Ratio of digits to all letters. [9]

Special Chars Ratio of non-alphanumeric chars to all chars. [6, 9, 12]

Distribution Kullback-Leibler divergence of the char distribution from the expectation. [9]

Diversity Length of all inserted lines to the (1 / number of different chars). [9]

Repetition Number of repeated char sequences. [5, 6, 12]

Length of the longest repeated char sequence. [9]

Compressibility Compression rate of the edit differences. [9, 12]

Spacing Length of the longest char sequence without whitespace. [9]

Markup Ratio of new (changed) wikitext chars to all wikitext chars. [3, 8, 12, 14]

Word-level Features

Vulgarism Frequency of vulgar words. [3, 5, 6, 9, 12, 14]

Vulgarism impact: ratio of new vulgar words to those present in the article. [9]

Pronouns Frequency (impact) of personal pronouns. [9]

Bias Frequency (impact) of biased words. [9]

Sex Frequency (impact) of sex-related words. [9]

Contractions Frequency (impact) of contractions. [9]

Sentiment Frequency (impact) of sentiment words. [5, 12]

Vandal words Frequency (impact) of the top-k words used by vandals. [3, 6, 9, 14]

Spam Words Frequency (impact) of words often used in spam. [12]

Inserted words Average term frequency of inserted words. [9]

Spelling and Grammar Features

Word Existence Ratio of words that occur in an English dictionary. [6]

Spelling Frequency (impact) of spelling errors. [5, 9, 12]

Grammar Number of grammatical errors. [5]

Edit Size Features

Revision size Size difference ratio between the old revision and the new one. [9, 12, 14]

Distance Edit distance between the old revision and the new revision. [1, 5]

Diff size Number of inserted (deleted, changed) chars (words). [3, 5, 9, 12]

Edit Type Features

Edit Type The edit is an insertion, deletion, modification, or a combination. [5]

Replacement The article (a paragraph) is completely replaced, excluding its title. [14]

Revert The edit reverts an article back to a previous revision. [14]

Blanking Whether the whole article has been deleted. [3, 12, 14]

Links and Files Number of added links (files) [12]



Table 2. Features based on meta information about an edit.

Feature Description References

Edit Comment Features

Existence A comment was given. [3, 6]

Length Length of the comment. [1, 9, 12, 14]

Revert Comment indicates the edit is a revert. [3, 14]

Language Comment contains vulgarism or wrong capitalization. [3, 8]

Bot Comment indicates the edit was made by a bot. [3]

Edit Time Features

Edit time Hour of the day the edit was made. [1]

Successiveness Logarithm of the time difference to the previous edit. [1]

Article Revision History Features

Revisions Number of revisions. [3]

Reverts Number of reverts. [3]

Regular Number of regular edits. [3]

Vandalism Number of vandalism edits. [3]

Editors Number of reputable editors. [3]

Article Trustworthiness Features

Suspect Topic The article is on the list of often vandalized articles. [12]

WikiTrust Values from the WikiTrust trust histogram. [1]

Number of words with a certain WikiTrust reputation score. [1]

Editor Reputation Features

Anonymous Anonymous editor. [1, 5, 6, 8, 9, 12, 14]

Known Editor Editor is administrator (on the list of reviewers) [12]

Edits Number of previous edits by the same editor. [5, 8, 14]

Number of previous edits by the same editor on the same article. [5]

Reputation Scores that compute a user’s reputation based on previous edits. [8]

Reverts Number of reverted edits, or participation in edit wars. [3, 14]

Vandalism Editor vandalized before. [14]

Registration Time the editor was registered with Wikipedia. [5, 14]

the right table column indicates who employed which feature in their detectors. Note

that our descriptions are not as detailed as those of the original authors, and that they

have been reformulated where appropriate in order to highlight similar feature ideas.

Content-based features as well as meta information-based features further subdivide

into groups of similar kinds. Content-based features on character-level aim at vandalism

that sticks out due to unusual typing, whereas features on word-level use dictionaries

to quantify the usage of certain word classes and words often used by vandals. Some

features even quantify spelling and grammar mistakes. The size of an edit is measured

in various ways, and certain edit types are distinguished. The meta information-based

features evaluate the comment left by an editor, and the time-related information about

an edit. Other features quantify certain characteristics about the edited article in order

to better inform the machine learning algorithm about the prevalence of vandalism in

an article’s history. Moreover, information about an editor’s reputation is quantified

assuming that reputable editors are less likely to vandalize.



Finally, all groups, who submitted a description of their approach, employed deci-

sion trees in their detectors, such as random forests, alternating decision trees, naive

Bayes decision trees, and C4.5 decision trees. Two groups additionally employed other

classifiers in an ensemble classifier. The winning detector uses a random forest of 1000

trees at 5 random features each.

3 Evaluation Results

In this section we report on the detection performances of the vandalism detectors that

took part in PAN. To determine the winning detector, their overall detection perfor-

mance is measured as AUC in ROC space and precision-recall space. Moreover, the

detectors’ curves are visualized in both spaces to gain further insight into their perfor-

mance characteristics. Finally, we train and evaluate a meta detector which combines

the predictions made by the individual detectors to determine what performance can be

expected from a detector that incorporates all of the aforementioned features. We find

that the meta detector outperforms all of the other detectors.

3.1 Overall Detection Performance

Table 3 shows the final ranking among the 9 vandalism detectors according to their area

under the ROC curve. Further, each detector’s area under the precision-recall curve is

given as well as the different ranking suggested by this measure. Both values measure

the detection performance of a detector on the 50% portion of the PAN-WVC-10 corpus

that was used as test set, which comprises 17 443 edits of which 1481 are vandalism.

The winning detector is that of Mola Velasco [9]; it clearly outperforms the other de-

tectors with regard to both measures. The performances of the remaining detectors vary

from good to poor performance. As a baseline for comparison, the expected detection

performance of a random detector is given.

Table 3. Final ranking of the vandalism detectors that took part in PAN 2010. For simplicity, each

detector is referred to by last name of the lead developer. The detectors are ranked by their area

under the ROC curve, ROC-AUC. Also, each detector’s area under the precision-recall curve,

PR-AUC, is given, along with the ranking difference suggested by this measure. The bottom row

shows the expected performance of a random detector.

ROC-AUC ROC rank PR-AUC PR rank Detector

0.92236 1 0.66522 1 – Mola Velasco [9]

0.90351 2 0.49263 3 ↓ Adler et al. [1]

0.89856 3 0.44756 4 ↓ Javanmardi [8]

0.89377 4 0.56213 2 ⇈ Chichkov [3]

0.87990 5 0.41365 7 � Seaward [12]

0.87669 6 0.42203 5 ↑ Hegedűs et al. [6]

0.85875 7 0.41498 6 ↑ Harpalani et al. [5]

0.84340 8 0.39341 8 – White and Maessen [14]

0.65404 9 0.12235 9 – Iftene [7]

0.50000 10 0.08490 10 – Random Detector



3.2 VisualizingDetectionPerformance in Precision-Recall Space andROCSpace

Figures 2 and 3 show the precision-recall space and the ROC space, and in each space

the respective curves of the vandalism detectors are plotted. Note that all detectors sup-

plied predictions for every edit in the test set, however, some detectors’ prediction val-

ues are less fine-grained than those of others, which can be also observed by looking at

the smoothness of a curve.

In precision-recall space, the detector of Mola Velasco is the only detector that

achieves a nearly perfect precision at recall values smaller than 0.2. All other curves

have lower precision values to begin with, and they fall off rather quickly with recall

increasing to 0.2. An exception is the detector of Chichkov. While the curves of the

detectors on ranks 5–8 behave similar at all times, those of the top 4 detectors behave

different up to a recall of 0.7, but similar onwards. Here, the detectors of Chichkov and

Javanmardi outperform the winning detector to some extent. Altogether, the winning
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Figure 2. Precision-recall curves of the vandalism detectors developed for PAN. The key is sorted

according to the final ranking of the vandalism detectors.



detector clearly outperforms the other detectors by far in precision-recall space, but it

does not dominate all of them, which shows possibilities for improvements. Neverthe-

less, its threshold can be adjusted so that 20% of the vandalism cases will be detected

with virtually perfect precision, i.e., it can be used without constant manual double-

checking of its decisions. This has serious practical implications and cannot be said of

any other detector in the competition.

By contrast, in ROC space, the detectors’ curves appear to be much more uniform.

Still, some detectors perform worse than others, but differences are less obvious. The

top 4 detectors and the detectors on ranks 5–8 behave similar at FP rates below 0.4.

The winning detector is outperformed by those of Chichkov and Javanmardi at FP

rates between 0.1 and 0.2, as well as those of Adler et al., Hegedűs et al., and Seaward

at FP rates above 0.6. Altogether, this visualization supports the winning detector but
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Figure 3. ROC curves of the vandalism detectors developed for PAN. The key is sorted according

to the final ranking of the vandalism detectors.



it does not set it apart from the rest, which may lead to the conclusion that the different

approaches and feature sets employed are not so different, after all.

Discussion. The differences between precision-recall space and ROC space underline

that they indeed possess unique properties, but they also raise the question, who’s right?

To answer this question for a particular classification task, it has to be determined

whether the precision or the FP rate is more important. For vandalism detection, due

to the class imbalance between regular edits and vandalism edits, precision may be

more important, which questions our decision made before the competition to use the

ROC-AUC to rank vandalism detectors.

3.3 Combining all Vandalism Detectors: The PAN’10 Meta Detector

Our evaluation shows that there is definite potential to improve vandalism detectors

even further: the winning detector does not dominate all other detectors, and more im-

portantly, no detector uses all features, yet. In what follows, we report on an experiment

to determine what the performance of a detector that incorporates all features would be.

To this end, we have set up the PAN’10 meta detector that trains a classifier based on

the predictions of all vandalism detectors for the set of test edits. The meta detector thus

combines the feature information encoded in the detectors’ predictions.

Let Ec denote the PAN-WVC-10 corpus of edits whose classification is known, and

let C denote the set of detectors developed for PAN, where every c ∈ C maps an edit

model αc(e) = e, e ∈ Ec, onto [0, 1]. Ec was split into a training set Ec|train and a test

set Ec|test. In the course of the competition, every c ∈ C was trained based on Ec|train

and then used to predict whether or not the edits in Ec|test are vandalism. Instead of

analyzing those predictions to determine the performance of the detectors in C—as

was done in the previous section—Ec|test is split again into Ec|test|train and Ec|test|test.

The former is used to train our new meta detector cPAN, while the latter is used to test its

performance. For cPAN an edit e ∈ Ec|test is modeled as a vector e of predictions made

by the detectors in C: e = (c1(αc1
(e)), . . . , c|C|(αc|C|

(e))) where ci ∈ C. That way,

without re-implementing the detectors, it is possible to test the impact of combining the

edit models of all detectors. To train cPAN we employ a random forest of 1000 trees at

4 random features each. Ec|test|train and Ec|test|test both comprise 8721 edits of which

713 and 768 are vandalism, respectively.

Table 4. Detection performance of the PAN’10 meta detector and the top 4 detectors in the com-

petition, measured by the areas under the ROC curve and the precision-recall curve, PR-AUC.

ROC-AUC PR-AUC Detector

0.95690 0.77609 PAN’10 Meta Detector

0.91580 0.66823 Mola Velasco [9]

0.90244 0.49483 Adler et al. [1]

0.89915 0.45144 Javanmardi [8]

0.89424 0.56951 Chichkov [3]

0.50000 0.08805 Random Detector
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Figure 4. Precision-recall curves and ROC curves of the PAN’10 meta detector and the top 4

vandalism detectors in the competition.

Table 4 contrasts the overall performance of our meta detector with the top 4 van-

dalism detectors in the competition: the meta detector outperforms the winning detector

by 5% ROC-AUC and by 16% PR-AUC. Note that, in order to make a fair comparison,

we have recomputed both measures for the top 4 detectors based only on Ec|test|test.

Figure 4 visualizes precision-recall space and ROC space for the 5 detectors. In both

spaces, the meta detector’s curves stick out notably. Observe that, in precision-recall

space, the meta detector is still outperformed by the winning detector at recall values

below 0.2. While in ROC space, the meta detector’s curve lies uniformly above the oth-

ers, the respective curve in precision-recall space shows that the meta detector gains

more performance at recall values above 0.4. This shows that none of the detectors pro-

vide the meta detector with additional information to correct errors in high-confidence

predictions, whereas, a lot of errors are corrected in low-confidence predictions.

4 Conclusion

In summary, the results of the 1st international competition on vandalism detection are

the following: 9 vandalism detectors have been developed, which include a total of

55 features to quantify vandalism characteristics of an edit. One detector achieves out-

standing performancewhich allows for its practical use. Further, all vandalism detectors

can be combined into a meta detector that even outperforms the single best performing

detector. This shows that there is definite potential to develop better detectors.

Lessons learned from the competition include that the evaluation of vandalism de-

tectors cannot be done solely based on the receiver operating characteristic, ROC, and

the area under ROC curves. Instead, an evaluation based on precision and recall pro-

vides more insights. Despite the good performances achieved, vandalism detectors still

have a long way to go, which pertains particularly to the development of vandalism-

indicating features. It is still unclear, which features contribute how much to the de-

tection performance. Finally, the corpora used to evaluate vandalism detectors require



further improvement with regard to annotation errors. Future evaluations of vandalism

detectors will have to address these shortcomings.
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