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Abstract This paper overviews 15 plagiarism detectors that have been evaluated
within the fourth international competition on plagiarism detection at PAN’12.
We report on their performances for two sub-tasks of external plagiarism detec-
tion: candidate document retrieval and detailed document comparison. Further-
more, we introduce the PAN plagiarism corpus 2012, the TIRA experimentation
platform, and the ChatNoir search engine for the ClueWeb. They add scale and
realism to the evaluation as well as new means of measuring performance.
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1 Introduction

To plagiarize means to reuse someone else’s work while pretending it to be one’s own.
Text plagiarism is perhaps one of the oldest forms of plagiarism, which, to this day,
remains difficult to be identified in practice. Therefore, a lot of research has been con-
ducted to detect plagiarism automatically. However, much of this research lacks proper
evaluation, rendering it irreproducible at times and mostly incomparable across pa-
pers [24]. In order to alleviate these issues, we have been organizing annual compe-
titions on plagiarism detection since 2009 [22, 23, 25]. For the purpose of these com-
petitions, we developed the first standardized evaluation framework for plagiarism de-
tection, which has been deployed and revised in the past three competitions, in which a
total of 32 teams of researchers took part, 9 of whom more than once.

Ideally, an evaluation framework accurately emulates the real world around a given
computational task in a controlled laboratory environment. But actually, every evalua-
tion framework models the real world to some extent only, while resting upon certain
design choices which affect the generalizability of evaluation results to practice. This
is also true for our evaluation framework, which has a number of shortcomings render-
ing it less realistic, sometimes leading its users to impractical algorithm design. In this
year’s fourth edition of the plagiarism detection competition, we venture off the beaten
track in order to further push the limits of evaluating plagiarism detectors. Our goal is
to create a more realistic evaluation framework in the course of the coming years. In
this paper, we describe our new framework and overview the 15 approaches submitted
to this year’s competition.
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Figure 1. Generic retrieval process to detect plagiarism [31].

1.1 Plagiarism Detection and its Step-wise Evaluation

Figure 1 shows a generic retrieval process to detect plagiarism in a given suspicious doc-
ument dplg, when also given a (very large) document collection D of potential source
documents. This process is also referred to as external plagiarism detection since pla-
giarism in dplg is detected by searching for text passages in D that are highly simi-
lar to text passages in dplg.1 The process is divided into three basic steps, which are
typically implemented in most plagiarism detectors. First, candidate retrieval, which
identifies a small set of candidate documents Dsrc ⊆ D that are likely sources for
plagiarism regarding dplg. Second, detailed comparison, where each candidate docu-
ment dsrc ∈ Dsrc is compared to dplg, extracting all passages of text that are highly
similar. Third, knowledge-based post-processing, where the extracted passage pairs are
cleaned, filtered, and possibly visualized for later presentation.

In the previous plagiarism detection competitions, we evaluated external plagiarism
detection as a whole, handing out large corpora of suspicious documents and source
documents. But instead of following the outlined steps, many resorted to comparing all
suspicious documents exhaustively to the available source documents. The reason for
this was that the number of source documents in our corpus was still too small to justify
serious attempts at candidate retrieval. In a realistic setting, however, the source collec-
tion is no less than the entire web, which renders exhaustive comparisons infeasible.
We hence decided to depart from a one-fits-all approach to evaluation, and instead to
evaluate plagiarism detectors step-wise. Our focus is on the candidate retrieval task and
the detailed comparison task, we devised new evaluation frameworks for each of them.
In the following two sections, we detail the evaluations of both tasks.

1 Another approach to detect plagiarism is called intrinsic plagiarism detection, where detectors
are given only a suspicious document and supposed to identify text passages in them which
deviate in their style from the remainder of the document. In this year’s competition, we focus
on external plagiarism detection, while intrinsic plagiarism detection has been evaluated in a
related sub-task within PAN’s authorship identification task [15].
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Figure 2. The basic steps of plagiarizing from the web [21].

2 Candidate Retrieval Evaluation

The web has become one of the most common sources for plagiarism and text reuse.
Presumably, humans follow the three steps outlined in Figure 2 when reusing or pla-
giarizing text from the web: starting with a search for appropriate sources on a given
topic, text is copied from them, and afterwards possibly modified to the extent that the
author believes it may not be easily detected anymore. Unsurprisingly, manufacturers
of commercial plagiarism detectors as well as researchers working on this subject fre-
quently claim their systems to be searching the web or at least be scalable to its size.
However, there is hardly any evidence to substantiate these claims. Neither have com-
mercial plagiarism detectors been found to reliably identify plagiarism from the web,2

nor have many researchers presented convincing evaluations of their prototypes [24]. In
this year’s competition, we address this issue for the first time by developing a corpus
specifically suited for candidate retrieval from the web.

Related Work. The previous PAN corpora3 marked a major step forward in evaluating
plagiarism detectors [24]. But these corpora have a number of shortcomings that render
them less realistic compared to real plagiarism from the web:

– All plagiarism cases were generated by randomly selecting text passages from
source documents and inserting them at random positions in another host document.
This way, the “plagiarized” passages do not match the topic of the host document.

– The majority of the plagiarized passages were modified to emulate plagiarist be-
havior. However, the strategies applied are, again, basically random (i.e., shuffling,
replacing, inserting, or deleting words randomly). An effort was made to avoid
non-readable text, yet none of it bears any semantics.

– The corpus documents are parts of books from the Project Gutenberg.4 Many of
these books are rather old, whereas today the web is the predominant source for
plagiarists.

2 http://plagiat.htw-berlin.de/software-en/2010-2
3 http://www.webis.de/research/corpora
4 http://www.gutenberg.org



With respect to the second issue, about 4000 plagiarized passages were rewritten man-
ually via crowdsourcing on Amazon’s Mechanical Turk. Though the obtained results
are of a high quality, an analysis of topic drift in a suspicious document still reveals a
plagiarized passage more easily than actually searching its original source [25]. While
neither of these issues is entirely detrimental to evaluation, it becomes clear that there
are limits to constructing plagiarism corpora automatically.

Besides the PAN corpora, there is only one other that explicitly comprises plagia-
rized text. The Clough09 corpus consists of 57 short answers to one of 5 computer
science questions which were plagiarized from a given Wikipedia article [2]. While the
text was genuinely written by a small number of volunteer students, the choice of topics
is very narrow, and text lengths range only from 200 to 300 words, which is hardly more
than 2-3 paragraphs. Also, the sources to plagiarize were given up front so that there is
no data on retrieving them.

A research field closely related to plagiarism detection is that of text reuse. Text
reuse and plagiarism are in fact two of a kind [21]: text reuse may appear in the forms of
citations, boilerplate text, translations, paraphrases, and summaries, whereas all of them
may be considered plagiarism under certain circumstances. Text reuse is more general
than plagiarism but the latter has received a lot more interest in terms of publications.
For the study of text reuse, there is the Meter corpus, which comprises 445 cases of
text reuse among 1716 news articles [3]. The text reuse cases found in the corpus are
realistic for the news domain, however, they have not been created by the reuse process
outlined in Figure 2.

Contributions. Altogether, we lack a realistic, large-scale evaluation corpus for candi-
date retrieval from the web. For this year’s competition, we hence decided to construct
a new corpus comprising long, manually written documents. The corpus construction,
for the first time, emulates the entire process of plagiarizing or reusing text shown in
Figure 2, both at scale and in a controlled environment. The corpus comprises a number
of features that set it apart from previous ones: (1) the topics of each plagiarized doc-
ument in the corpus are derived from the topics of the TREC Web Track, and sources
have been retrieved from the ClueWeb corpus. (2) The search for sources is logged,
including click-through and browsing data. (3) A fine-grained edit history has been
recorded for each plagiarized document. (4) A total of 300 plagiarized documents were
produced, most of them 5000 words long, while ensuring diversity via crowdsourcing.

2.1 Corpus Construction Tools: TREC Topics, ClueWeb, ChatNoir, Web Editor

This section details the ingredients that went into the development of our new corpus
and the constraints that were to be met. Generally, when constructing a new corpus, a
good starting point is a clear understanding of a-priori required resources. With regard
to our corpus, we distinguish three categories: data, technologies, and human resources.
For each of these, a number of constraints as well as desirable properties and character-
istics were identified.

Data. Two pieces of data were required for corpus construction: a set of topics about
which documents were to be written, and a corpus of web pages to be used as sources



for plagiarism. Coming up with a variety of topics to write about is certainly not a big
problem. However, we specifically sought not to reinvent the wheel, and when looking
for sources of topics, TREC can hardly go unnoticed. After reviewing the topics used
for the TREC Web Track,5 we found them amenable for our purpose. Hence, our topics
are derived from TREC topics, rephrasing them so that one is asked to write a text
instead of searching for relevant web pages. Yet, writing a text on a given topic may
still include the task of searching for relevant web pages. For example, below is a quote
of topic 001 of the TREC Web Track 2009:

Query: obama family tree

Description: Find information on President Barack Obama’s family history,
including genealogy, national origins, places and dates of birth, etc.

Sub-topic 1: Find the TIME magazine photo essay “Barack Obama’s Family
Tree.”

Sub-topic 2: Where did Barack Obama’s parents and grandparents come from?

Sub-topic 3: Find biographical information on Barack Obama’s mother.

This topic has been rephrased as follows:

Obama’s family. Write about President Barack Obama’s family history, in-
cluding genealogy, national origins, places and dates of birth, etc. Where did
Barack Obama’s parents and grandparents come from? Also include a brief
biography of Obama’s mother.

All except one sub-topic could be preserved, whereas sub-topic 1 was considered too
specific to be of real use, especially since a photo essay does not contain a lot of text.
Two groups of topics are among the TREC Web track topics, namely faceted and am-
biguous ones. The former were easier to be translated into essay topics, whereas for the
latter, we typically chose one of the available ambiguities.

With regard to the corpus of web pages used as sources for plagiarism, one of the
top requirements was a huge size in order to foreclose exhaustive comparisons of sus-
picious documents to all the documents in the corpus. The corpus should also be as
representative as possible compared to the entire web. To date, one of the most rep-
resentative web crawls available to researchers is the ClueWeb corpus.6 The corpus
consists of more than 1 billion documents from 10 languages which amount to 25 ter-
abytes of data. It has become a widely accepted resource, being used to evaluate the
retrieval performance of search engines in the course of the TREC Web Track 2009–
2011. Other publicly available corpora include the DOTGOV crawl and the WT10G
crawl, which were previously used in TREC, as well as the crawl released by the Com-
moncrawl initiative, which is 5 times larger than the ClueWeb corpus.7 However, since
the ClueWeb corpus is still the de-facto standard evaluation corpus, we decided to stick
with it. Consequently, we have limited our choice of topics to those used within the
TREC Web Tracks 2009–2011.

5 http://trec.nist.gov/tracks.html
6 http://lemurproject.org/clueweb09.php
7 http://commoncrawl.org



Technologies. Three pieces of technology were required for corpus construction: a
search engine for the aforementioned web corpus, a web service that serves web pages
from the web corpus on demand, and a text editor with which the plagiarized documents
were to be written. Unfortunately, neither of these technologies could be obtained off
the shelf, since we required full access to them in order to closely track our human
subjects during corpus construction to make measurements and collect data.

For the sake of realism, we expected the search engine used for corpus construction
to resemble commercial ones as close as possible, so that our human subjects behave
naturally and similar to “real plagiarists.” This requires not only a state-of-the-art web
retrieval model, but also an intuitive interface as well as fast retrieval. Until now, there
has been no search engine publicly available to researchers that combines all of these
properties. However, our work on this corpus construction project coincided with the
development of a new research search engine for the ClueWeb at our site: ChatNoir [26].

The ChatNoir search engine is based on the classic BM25F retrieval model [27],
using the anchor text list provided by the University of Twente [13], the PageRanks
provided by the Carnegie Mellon University,8 and the spam rank list provided by the
University of Waterloo [4]. ChatNoir also incorporates an approximate proximity fea-
ture with variable-width buckets as described by Elsayed et al. [5]: the text body of each
document is divided into 64 buckets such that neighboring buckets have a half-bucket
overlap. For each keyword, not the exact position is stored in a 1-gram index but its
occurrence in the individual buckets is indicated via a bit flag. Hence, for each keyword
in a document, a 64-bit vector stores whether it occurs in one of the 64 buckets. This
retrieval model is of course not as mature as those of commercial search engines; yet
it combines some of the most widely accepted approaches in information retrieval. In
addition to the retrieval model, ChatNoir also implements two search facets relevant
to those who plagiarize from the web: text readability scoring, and long text search.
The former facet, similar to that offered by Google, scores the readability of the text
found on every web page using the well-known Flesh-Kincaid grade level formula. It
estimates the number of years one should have visited school in order to understand a
given text. This number is then mapped onto the three fuzzy categories „simple,” „in-
termediate,” and „expert.” The long text search facet filters search results which do not
contain at least one continuous paragraph of text longer than a threshold of 300 words.
The facets can be combined with each other. ChatNoir indexes 1-grams, 2-grams, and
3-grams, and the implementation of the underlying inverted index has been optimized
to guarantee fast response times. It runs on a cluster of 10 standard quad-core PCs and
2 eight-core rack servers. Short to medium length queries are answered between 1 and
5 seconds. The web interface of ChatNoir resembles that of commercial search engines
in terms of search result presentation and usability.9

When a user of our search engine is presented with her search results and then
clicks on one of them, she is not redirected into the real web but the ClueWeb instead.
Although the ClueWeb provides the original URLs from which the web pages have been
obtained, many are dead or have been updated since the corpus was crawled. Moreover,
in order to create traceable plagiarism cases, the plagiarized texts should come from

8 http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php?page=PageRank
9 http://chatnoir.webis.de



a web page which is available in the ClueWeb. We hence have set up a web service
that serves web pages from the ClueWeb on demand: when accessing a web page, it
is pre-processed before being shipped, removing all kinds of automatic referrers, and
replacing all links that point into the real web with links onto their corresponding web
page inside the ClueWeb. This way, the ClueWeb may be browsed as if surfing the real
web, whereas it becomes possible to precisely track a user’s movements. The ClueWeb
itself is stored in the HDFS of our 40 node Hadoop cluster, and each web page is fetched
directly from there with latencies around 200ms.

Next to the search engine and the ClueWeb access service, the third technology re-
quired for corpus construction must strike as a simple one: a basic text editor. However,
in order to properly trace how a plagiarism case was constructed, the human subjects
who plagiarized on our behalf must be minutely tracked while modifying a piece of text
copied from a web page that has been retrieved with our search engine. Furthermore, the
editor to be used should allow for remote work since we did not know in advance who
was going to plagiarize for us. Looking at the available alternatives (Microsoft Word,
OpenOffice, Google Docs, Zoho, rich text editors, etc.) we decided to go with the sim-
plest option of web-based rich text editors. They offer maximal flexibility while being
simple to use: using a well-known web toolkit, a web application has been developed
that features a rich text editor alongside a set of instructions. The editor provides an
autosave feature that sends the current state of a text to our servers, every time the user
stops typing for more than 300ms. On the server side, each new revision of a given text
is stored into a Git repository. This way, a detailed revision history is recorded which
tracks the edits made to a text in much finer detail than, for instance, those of Wikipedia
articles. Moreover, the editor enables its users to track the sources of text copied into
it by allowing for it to be colored, and each color to be linked to the web page the text
came from (cf. Figure 3, right column). This manual effort of immediate annotation was
required from our human subjects in order to ease post-processing and quality control.

Human Resources. Having a working, controlled web search environment at hand, an
open question was who to pick as volunteer plagiarists. Short of real ones, we employ
people who act as plagiarists. Since the target language of the corpus is English, we re-
quire them to be fluent English speakers and preferably have some writing experience.
We assume that (semi-)professional writers are not only faster but also have at their dis-
posal more diverse ways of modifying a text so as to vary the outcome. We have made
use of crowdsourcing platforms to hire writers. Crowdsourcing has quickly become one
of the cornerstones of constructing evaluation corpora. This is especially true for paid
crowdsourcing via Amazon’s Mechanical Turk [1]. This platform is frequently used by
researchers to annotate and collect data. On the upside, it offers a flexible interface,
a large workforce, and very low costs per unit. Many report on collecting thousands
of annotations for just a couple of dollars. On the downside, however, scammers con-
stantly submit fake results in order to get paid without actually working, so that quality
control is one of the main obstacles to using Mechanical Turk. Moreover, the workforce
has very diverse skills and knowledge so that task design and simplicity of task descrip-
tion have severe impact on result quality. Since our task is hardly simple enough for
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Figure 3. Corpus example (topic 058): plagiarized passages can be traced back to their source
web pages and the queries that retrieved them.

Mechanical Turk, we resort to oDesk instead.10 At oDesk, wages are higher, whereas
scamming is much lower because of more advanced rating features for workers and
employers. Finally, at our site, two post docs worked part time to supervise the oDesk
workers and check their results, whereas the technologies were kept running by three
undergrad students.

2.2 Corpus Construction

To construct our corpus, we hired 18 (self-proclaimed) professional writers at oDesk,
coming from various countries and backgrounds. A job advertisement was posted at
oDesk to which more than half of the workforce replied, whereas the other authors
were sought out manually. Employment criteria included a reasonable application to the
job ad, a reasonable number of previously billed hours in other writing appointments,
and, for budgetary reasons, an hourly rate below 25 US$. Nevertheless, a few writers
above that rate were hired to ensure diversity. The hourly rates ranged from 3.33 US$
to 34 US$ with an average of 12.43 US$. Before hiring writers at oDesk, we recruited
10 colleagues and friends to test the environment by producing a plagiarized document
each, so that a total of 28 different writers were involved in corpus construction.

Plagiarized documents were produced in two batches of 150 documents each, so
that each of the aforementioned TREC topics has been written about twice. No writer
was allowed to pick the same topic twice. There was a key difference between the first
and the second batch which relates to the retrieval model employed for searching source
documents in the ClueWeb. Given the fact that the ChatNoir search engine implements
only a single, basic retrieval model, our setup bears the risk of a systematic error if
writers use only our search engine to search for source documents on a given topic

10 http://www.odesk.com



(e.g., implementation errors, poor retrieval performance, etc.). Hence, we decided to
circumvent this risk by reusing TREC qrels (documents retrieved by participants of the
TREC Web Tracks and judged for relevance by the TREC organizers) which achieved
at least the relevance level 2 of 3 on a given topic. For each topic in the first batch, writ-
ers were asked to plagiarize from as many of the topic-specific qrels as they wished,
without using ChatNoir. In the second batch, no source documents were given and writ-
ers were asked to use ChatNoir to retrieve sources matching a given topic. This way, the
plagiarism in the documents from the first batch stems from source documents that were
retrieved by the union of all retrieval models that took part in the TREC Web Tracks,
whereas the second batch is based on ChatNoir’s retrieval model only.

Each writer worked on one topic at a time while being allowed to choose from the
remaining topics. They were asked to write documents of at least 5000 words length,
which sometimes was not possible due to lack of source material. Besides plagiarized
text passages, they were also asked to genuinely write text of their own. In this connec-
tion, we observed that, once plagiarism is allowed, writers became reluctant to write
genuine text. The number of possible sources was limited to up to 30 for the first batch
and increased to up to 75 during the second batch. Throughout corpus construction, a
number of measurements were made so that substantial meta data can be provided in
addition to each plagiarized document (Figure 3 shows an example of this data):

– Plagiarized document
– Set of source documents plagiarized.
– Annotations of passages plagiarized from the sources.
– Log of queries posed by the writer while writing the text.
– Search results for each query.
– Click-through data for each query.
– Browsing data of links clicked within ClueWeb documents.
– Edit history of the document.

Finally, each plagiarized document, along with its meta data, is post-processed to
correct errors and to convert it into a machine-readable format that suits the needs
of evaluating plagiarism detectors. The post-processing step includes double-checking
whether the source documents are all contained in the ClueWeb, and whether the anno-
tation of text passages to source documents is correct. Moreover, because of the rather
crude HTML code that is generated by today’s rich text editors, each plagiarized doc-
ument must be manually annotated in order to mark the beginning and end of each
plagiarized text passage. At the time of writing, post-processing the plagiarized docu-
ments constructed for our corpus was still a work in progress.

2.3 Evaluation with the ChatNoir Search Engine

Since our new corpus uses the ClueWeb as the collection of source documents, it is this
collection that must be input to a plagiarism detector implementing the retrieval process
shown in Figure 1. Given the prize and size of the ClueWeb, however, we could hardly
expect participants to first buy a license and then index the ClueWeb in the three months
of the competition’s training phase. In the 2009 plagiarism detection competition, our



first plagiarism corpus of more than 40 000 text documents already posed a challenge to
participants, so that handling the 0.5 billion English web pages of the ClueWeb would
have been an insurmountable obstacle to most prospective participants. It is hence that
ChatNoir served two purposes in our evaluation: its user interface was used by our
human plagiarists to search for source documents, and its API was used by participants
to develop retrieval algorithms that rediscover the sources of a suspicious document.
This is a realistic approach, since it is likely that real plagiarists use the same search
engine as commercial plagiarism detectors.

Evaluation Corpus. The competition was divided into two phases, a training phase
and a test phase. For both phases, a subset of our corpus was released. The training
corpus consisted of 8 plagiarized documents including annotations that indicated which
text passage was plagiarized from which ClueWeb document, whereas the test corpus
(consisting of 32 documents) naturally did not contain such annotations. Note that the
evaluation corpora used in this year’s candidate retrieval task did not include all pla-
giarized documents created, but only a subset of them. There are two reasons for this:
at the time of release of the training and test corpora, not all documents were finished,
and post-processing the raw documents obtained from the oDesk writers was too time-
consuming so that no further documents could be added in time for the release.

Performance Measures. The performance of a candidate retrieval algorithm depends
on what is its desired behavior. The candidate retrieval step of plagiarism detection is
supposed to filter the collection of potential source documents and to output only the
candidate documents that are likely sources for plagiarism with respect to a given suspi-
cious document. Ideally, a candidate retrieval algorithm would retrieve exactly the doc-
uments used as sources by a plagiarist, and none other. This way, the subsequent steps
in plagiarism detection would have to deal only with documents that are worthwhile
processing. Furthermore, when considering that the document collection to be searched
by a candidate retrieval algorithm may be the entire web, it becomes clear that existing
retrieval models, search engines, and search infrastructures should be reused for this
task. Building one’s own search engine is out of bounds for many, whereas access to
existing search engines is usually not free of charge (both in terms of cost per query
and retrieval time). Therefore, an ideal candidate retrieval algorithm also minimizes the
amount of queries posed to a search engine in order to retrieve candidate documents.
With these considerations in mind, we measure candidate retrieval performance for each
suspicious document in the test corpus using the following five scores:

1. Number of queries submitted.
2. Number of web pages downloaded.
3. Precision and recall of web pages downloaded regarding the actual sources.
4. Number of queries until the first actual source is found.
5. Number of downloads until the first actual source is downloaded.

Measures 1–3 capture a candidate retrieval algorithm’s overall behavior and measures
4–5 assess the time to first detection. Note in this connection, that neither of these mea-
sures captures the quality of extracting plagiarized passages from suspicious documents
since this is supposed to happen within the detailed comparison of candidate documents
with a suspicious document.



2.4 Survey of Retrieval Approaches

Five of the 15 participants submitted runs for the candidate retrieval task, four of whom
also submitted a notebook describing their approach. An analysis of these notebooks re-
veals a number of building blocks that were commonly used to build candidate retrieval
algorithms: (1) chunking, (2) keyphrase extraction, (3) query formulation, (4) search
control, and (5) download filtering. In what follows, we describe them in detail.

Chunking. Given a suspicious document, it is divided into (possibly overlapping) pas-
sages of text. Each chunk of text is then processed individually. Rationale for chunking
the suspicious document is to evenly distribute “attention” over a suspicious document
so that algorithms employed in subsequent steps are less susceptible to unexpected char-
acteristics of the suspicious document. The chunking strategies employed by the partici-
pants are 25-line chunking [7], 4-sentence chunking [14], paragraph chunking [17], and
no chunking [32]. Neither of the participants mention the extent to which the chunks
produced by their strategies overlap.

Keyphrase Extraction. Given a chunk (or the entire suspicious document), keyphrases
are extracted from it in order to formulate queries with them. Rationale for keyphrase
extraction is to select only those phrases (or words) which maximize the chance of
retrieving source documents matching the suspicious document. Keyphrase extraction
may also serve as a means to limit the amount of queries formulated, thus reducing
the overall costs of using a search engine. This step is perhaps the most important one
of a candidate retrieval algorithm since the decisions made here directly affect overall
performance: the fewer keywords are extracted, the better the choice must be or recall
is irrevocably lost.

Since ChatNoir, during this year’s test phase, unfortunately still lacked phrasal
search, participants resorted to extracting keywords. Kong et al. [17] rank a chunk’s
words by their tf · idf values, where a word’s document frequency is presumably ob-
tained from a large external document collection, and then extract the top 10 most dis-
criminative words. Jayapal [14] uses the first 10 words of a chunk whose part-of-speech
are either noun, pronoun, verb, or adjective. Gillam et al. [7] rank a chunk’s words using
a so-called “enhanced weirdness” score which measures the likelihood of a word not
appearing in general text, then re-rank the top 10 words by their frequency, and return
the top most frequent term plus the 4 words succeeding it. The keyphrase extractor of
Suchomel et al. [32] goes beyond the aforementioned ones in that it employs not one but
three strategies at the same time: (1) a chunk’s words are ranked by their tf ·idf values,
where a word’s document frequency is obtained from an English web corpus, and then
extract the top most discriminative words that exceed a threshold. (2) The suspicious
document is chunked in 45-word chunks (40 word overlap), then chunks are picked
whose vocabulary richness is significantly higher than that of neighboring chunks, from
each of which the first sentence longer than 8 words (excluding stop words) is selected
and the first 6 words (excluding stop words) are extracted. (3) Headings in the suspi-
cious document are identified and extracted (excluding stop words).

A key insight from reviewing the participants approaches is that Suchomel et al.’s
strategy of combining different ideas to extract keyphrases is probably superior to the



one-fits-all approach of the other participants. This way, just as with chunking, the risk
of algorithm error is further diminished and it becomes possible to exploit different
sources of information that complement each other. A minor criticism is that only
custom-made keyphrase extractors were used, and hardly any reference was made to
the extensive literature on the subject. While it may be necessary to tailor keyphrase ex-
traction methods to the task of candidate retrieval, existing work should not be entirely
neglected.

Query Formulation. Given sets of keywords extracted from chunks, queries are for-
mulated which are tailored to the API of the search engine used. Rationale for this is
to adhere to restrictions imposed by the search engine and to exploit search features
that go beyond basic keyword search. The maximum number of search terms enforced
by ChatNoir is 10 keywords per query. All participants except Jayapal [14], who for-
mulated 10-word queries, formulated 5-to-6-word queries, using the word ranking of
their respective keyword extractor. The reason for limiting query length was to avoid
overspecific queries. Interestingly, the participants formulate non-overlapping queries
(i.e., they do not use the same keyword in more than one query), in contrast to previous
candidate retrieval strategies in the literature [12]. Also note that non of the participants
made use of the search facets offered by ChatNoir, namely the facet to search for web
pages of at least 300 words of text, and the facet to filter search results by readability.

Search Control. Given a set of queries, the search controller schedules their submis-
sion to the search engine and directs the download of search results. Rationale for this
is to dynamically adjust the search based on the results of each query, which may in-
clude dropping queries, reformulating existing ones, or formulating new ones based on
the relevance feedback obtained from search results. Only Suchomel et al. [32] imple-
mented a search controller, whereas all other participants simply submitted all queries
to the search engine, downloading all, or only the top n results. Suchomel et al.’s search
controller schedules queries dependent on the keyphrase extractor which extracted their
words: the order of precedence corresponds to the order in which they have been ex-
plained above. Then, for each search result obtained from submitting one open query, it
is checked whether its snippet is contained in the suspicious document. If so, the doc-
ument is downloaded and subject to detailed comparison to the suspicious document.
In case, a plagiarized passage is discovered, all queries whose keywords originate from
that portion of the suspicious document are discarded from the list of open queries. No
attempts are made at reformulating existing queries or formulating new ones based on
the documents downloaded.

Download Filtering. Given a set of downloaded documents, a download filter removes
all documents that are probably not worthwhile being compared in detail with the sus-
picious document. Rationale for this is to further reduce the set of candidates and to
save invocations of the subsequent detailed comparison step. All except one participant
skipped this step and proceeded to detailed comparison directly. Jayapal [14] computes
the 5-gram Jaccard similarity of each downloaded document to the suspicious document
and discards documents that do not exceed a similarity threshold.



Table 1. Performances on the candidate retrieval subtask. Values are averaged over the 32 sus-
picious documents from the test corpus. The top half of the table shows performances when
interpreting near-duplicates of the actual source documents as true positives; the bottom half of
the table shows performances without considering near-duplicates true positives.

Total Time to No Reported Downloaded Retrieved
Team Workload 1st Detection Detection Sources Sources Sources

Queries Downloads Queries Downloads Precision Recall Precision Recall Precision Recall

Gillam 63.44 527.41 4.47 25.88 1 0.6266 0.2493 0.0182 0.5567 0.0182 0.5567
Jayapal 67.06 173.47 8.78 13.50 1 0.6582 0.2775 0.0709 0.4342 0.0698 0.4342
Kong 551.06 326.66 80.59 27.47 2 0.5720 0.2351 0.0178 0.3742 0.0141 0.3788
Palkovskii 63.13 1026.72 27.28 318.94 6 0.4349 0.1203 0.0025 0.2133 0.0024 0.2133
Suchomel 12.56 95.41 1.53 6.28 2 0.5177 0.2087 0.0813 0.3513 0.0094 0.4519

Gillam 63.44 527.41 52.38 445.25 22 0.0310 0.0414 0.0016 0.0526 0.0019 0.0526
Jayapal 67.06 173.47 39.00 115.13 16 0.0328 0.0394 0.0079 0.0994 0.0108 0.0994
Kong 551.06 326.66 440.59 274.06 21 0.0280 0.0458 0.0019 0.0391 0.0015 0.0435
Palkovskii 63.13 1026.72 54.88 881.34 25 0.0246 0.0286 0.0002 0.0286 0.0002 0.0364
Suchomel 12.56 95.41 11.16 93.72 30 0.0208 0.0124 0.0007 0.0124 0.0003 0.0208

2.5 Evaluation Results

Table 1 shows averaged performances of the five candidate retrieval algorithms over
the 32 plagiarized documents that formed the test corpus. While computing the perfor-
mances, we encountered a problem that required (semi-)automatic post-processing of
the submitted runs, namely that many web pages in the ClueWeb are near-duplicates
of one another. Although the plagiarized passages in the corpus documents were lifted
from exactly one web page, it is very well possible that a candidate retrieval algorithm
retrieves a different page with the same contents. In such cases, the candidate algo-
rithm is not in error and hence its performance should not be discounted. To alleviate
this issue we compared all documents retrieved by the candidate retrieval algorithms
in turn to each of the 362 sources for plagiarism in the test corpus in order to identify
near-duplicate web pages. Here, two web pages are considered near-duplicates if their
cosine similarity under a tf -weighted 1-gram vector space model is higher than 0.85
and higher than 0.7 under a tf -weighted 3-gram vector space model. A number of spot
checks were made to ensure a low rate of false positives, however, since some plagia-
rized passages in our corpus are rather short, there is the possibility that some of the
documents retrieved were falsely considered not being duplicates of the actual source
documents. The top half of Table 1 shows performances when treating near-duplicates
as positive source documents, and the bottom half shows performances when counting
only detections of actual source documents. The differences are profound, indicating
that most candidate retrieval algorithms mainly retrieved near-duplicates of the plagia-
rized documents’ actual sources from the ClueWeb.

The column group “Reported Sources” shows precision and recall of the sets of
candidate documents that have been submitted as runs by the participants, whereas the
performances shown in all other columns and column groups are based on access log
data recorded at our site. To facilitate these measurements, each participant’s candidate



retrieval algorithm was assigned a unique access token and an exclusive access time
period to ChatNoir in order to process the test corpus. All other access methods were
disabled during the test phase. Furthermore, participants were asked to indicate during
access which plagiarized document of the test corpus is currently processed by their al-
gorithm. This enabled us to record detailed information about queries submitted, search
results obtained, and downloads made.

The three column groups “Retrieved Sources,” “Downloaded Sources,” and “Re-
ported Sources” measure performance at specific points of executing a candidate re-
trieval algorithm: after all queries have been submitted, after selected search results
have been downloaded, and after the final decision is made as to which downloaded
documents are considered candidates. Hence, the set of retrieved documents equals or
subsumes the set of downloaded ones, which in turn equals or subsumes the set of re-
ported documents. It can be seen that noteworthy precision is only achieved regarding
reported sources, whereas recall is at times more than double as high on downloaded
and retrieved sources compared to reported ones. This indicates that all candidate re-
trieval algorithms trade a lot of recall for precision during download filtering. The best
performing approach regarding reported sources is that of Jayapal [14], while coming
in second to Gillam et al. [7] regarding downloaded and retrieved sources.

The three remaining column groups indicate the total workload and the time to
first detection of each candidate retrieval algorithm, given in absolute terms of queries
submitted and downloads made. The column “No Detection” indicates for how many
plagiarized documents no true positive detection was made, which shows very low val-
ues in the top half of the table. Otherwise, the average number of queries and down-
loads ranges from tens to thousands. The best performing approach by a long margin
is that of Suchomel et al. [32]. Here, their search controller pays off, while presum-
ably the combination of three keyword extractors maintains high precision and recall
regarding reported sources: despite their low numbers of queries and downloads, a re-
markably competitive precision and recall is achieved. Clearly, this approach is the most
cost-effective one. The approach of Jayapal, however, requires only six times as many
queries overall and less than twice as many downloads.

Discussion. The obtained results validate our setup: the search engine apparently re-
trieves web pages that are useful for both humans and machines. Especially, it is possi-
ble for a machine plagiarism detector to trace the steps of a human plagiarist. That said,
there is still a lot of room for improvement concerning the tools used within our new
evaluation framework and the participants’ candidate retrieval approaches. With regard
to our evaluation framework, ChatNoir is still a single point of failure, and improve-
ments to its retrieval model directly affect participants’ performances. Moreover, the
performance measures used above require further research: from the evaluation results,
it can already be concluded that candidate retrieval is a recall-oriented task, whereas
precision mainly becomes a measure of runtime of subsequent steps. Finally, the partic-
ipants’ approaches are still somewhat immature (as can be expected when introducing
a new evaluation framework [22]). Their detection quality is rather low, which lim-
its the overall detection performance of a web plagiarism detector. Also, the research
presented is often not well-founded in the literature.



3 Detailed Comparison Evaluation

After a set of candidate source documents has been retrieved for a suspicious doc-
ument, the follow-up task of an external plagiarism detection pipeline is to analyze in
detail whether the suspicious document in fact contains plagiarized passages from these
sources (cf. Figure 1), and to extract them with high accuracy. The major difference of
this year’s detailed comparison evaluation compared to previous years is that we asked
participants to submit their detection software instead of just detection results on a given
data set, which has a couple of advantages:

– Runtime Analysis. Software submissions of detailed comparison approaches, al-
lows for measuring and comparing runtime characteristics, since, for commercial
plagiarism detectors, efficiency is just as important as detection effectiveness.

– Real Plagiarism Cases. Real plagiarism cases are the ultimate resource to evaluate
plagiarism detectors. In previous competitions, privacy concerns prevented us from
using them in our evaluation, since these cases would have to be released to the
participants. Having the software at our site, this year, a small set of real plagiarism
cases was incorporated into the test collection for the first time.

– Continuous Evaluation. In the course of the previous competitions, the employed
corpora have changed considerably (improving their quality in each iteration).
Hence, it has become difficult to compare detection performances across years and
thus, it is hard to tell to which extent the approaches have improved over time. For
instance, in 2011, the best overall detection performance was, in absolute terms,
below that of 2010, whereas the evaluation corpus used in 2011 was a lot more
difficult than before. With software submissions, it is now possible to continuously
compare approaches from multiple years whenever new collections are released,
given the consent of the respective authors.

This year, eleven teams submitted software, which is comparable to last year’s num-
ber of participants. Software submissions are hence no big obstacle to participants and
should be pursued further in the future.

3.1 Evaluation with the Experimentation Platform TIRA

Besides the aforementioned advantages of software submissions, there are also disad-
vantages, for instance, the non-negligible amount of extra work on the organizer’s side.
One possibility to reduce the complexity of the evaluation task is to constrain partic-
ipants to a certain operating system and programming language. However, due to the
diverse coding preferences of software developers and the fact that a mismatch of our
constraints to their preferences would foreclose reusing existing prior work, it is futile
to find a platform that satisfies all participants. We hence decided to allow for detailed
comparison software of various kinds, and use the experimentation platform TIRA [10]
to keep the organizational overhead moderate. This way, we kept the criteria to be met
by participants’ software at a minimum: it must be executable on either a Windows or a
Linux platform, it must accept two input parameters (the location of the suspicious doc-
ument and that of a candidate document) and return detection results in a pre-specified



XML format, and it must be accompanied by a comprehensive installation manual. Fur-
thermore, TIRA provides a set of features that facilitate our work [9]:

– Experiments as a Service. TIRA creates a web service for every deployed program.
The web service can be accessed remotely using a web browser. It allows for the
convenient execution of a program with individual parameter settings as well as for
the retrieval of already computed experiment results.

– System Independence. Shipped as a Java program, TIRA can be instantiated on
both Windows and Linux platforms. Deployed programs are executed from a com-
mand shell of the underlying operating system, rendering program execution inde-
pendent of a specific programming language or middleware.

– Peer To Peer Networking. The possibility to join TIRA instances on different ma-
chines to form a TIRA network allows to control programs running on different
operating systems from a single web page.

– Multivalued Configurations. TIRA provides an intuitive mechanism for specifying
multiple values for program parameters. This way, a large series of program runs
can be initiated by a single run configuration.

– Distributed Execution. The scheduling mechanism of TIRA supports the efficient
execution of programs in different threads and across multiple machines.

– Result Retrieval. TIRA provides means for storing, indexing, and retrieving exper-
iment results.

TIRA was employed in the training phase as well as the test phase of this year’s
competition. In the training phase, participants were given the possibility to upload
detection results which they obtained on the released training corpus. As a response,
TIRA returned the performance values for the submission. Since the performance val-
ues have been publicly visible, our idea was to use TIRA as an online leader board for
the early phase of the competition. However, the service has not been adopted until the
last week before the run submission deadline [8]. For the test phase, a Windows 7 and an
Ubuntu 12.04 virtual machine was set up, each running on a computer with 70 GB RAM
and two quad-core Intel Xeon E552 CPUs, and TIRA as well as all program submis-
sions were installed. For one submission, we experienced unsolvable runtime problems
and, in mutual agreement with the authors, omitted this submission from the evalua-
tion. The two virtual machines were accessible from the local network, and linked to a
third TIRA instance which served as the control instance. From this control instance the
evaluation of all submissions on all of the sub-corpora of the test corpus was managed.
Computing the results for all submissions took two days.

Evaluation Corpus. As an evaluation corpus, we employed the corpus construction
process used in previous competitions. Based on the books of Project Gutenberg, we
extracted passages from one subset of the books (source documents), obfuscated them,
and inserted them as plagiarized passages into a different subset of books (suspicious
documents). For the obfuscation process, the four strategies No Obfuscation, Artifi-
cial (Low), Artificial (High), and Manual Paraphrasing were used. In addition, the eval-



Table 2. Corpus statistics of the PAN 2012 detailed comparison test corpus.

Evaluation Corpus Statistics
Sub-Corpus Number of Cases Avg. Cosine Similarity

Real Cases 33 0.161
Simulated 500 0.364
Translation ({de, es} → en) 500 0.018
Artificial (High) 500 0.392
Artificial (Low) 500 0.455
No Obfuscation 500 0.560
No Plagiarism 500 0.431

Overall / Averaged 3033 0.369

uation corpus contains documents without any plagiarized passages. A more detailed
description of the obfuscation strategies can be found in [21].

Similar to previous years, we also constructed a set of cross-language plagiarism
cases. This time, however, we did not apply Google Translate as it was observed that
such a construction strategy is biased towards detailed comparison approaches which
themselves use Google Translate to detect cross-language plagiarism. Instead, we com-
pletely revised the cross-language sub-corpus and created the cases based on the multi-
lingual Europarl corpus [16]. Starting from a non-English source document in the cor-
pus, we first eliminated all paragraphs not coming from the document’s main speaker,
selected a passage to be plagiarized, extracted the corresponding passage from the En-
glish version of the source document, and inserted it into a Gutenberg book. Another
improvement over previous years is that document similarity was considered when
choosing a suspicious document for a given source document. Especially pairs of sus-
picious and source document pairs without plagiarized passages or unobfuscated ones,
we intended to make the detection task more challenging and realistic by selecting
books with a similar vocabulary. Similarities were computed under a tf -weighted vec-
tor space model, employing stop word removal, and the cosine similarity metric. The
average similarities for each of the sub-corpora and their respective sizes are given in
Table 2. Finally, the 33 real plagiarism cases used this year were obtained by manu-
ally collecting them from the Internet. Each case consists of passages of no more than
75-150 words, and they were found not to be embedded in host documents. We hence
resorted to embedding them, automatically, into topically related host documents sam-
pled from Wikipedia. Of 10 000 Wikipedia articles, for each plagiarism case, two dif-
ferent host documents were chosen which are similar to the plagiarized passage under
a tf · idf -weighted vector space model and the cosine similarity. Then, the plagiarism
case’s plagiarized and source passages were inserted at randomly selected positions of
the two documents, each in one of them.

Performance Measures. To assess the performance of the submitted detailed compari-
son approaches, we employed the performance measures used in previous competitions.



For this paper to be self-contained, we summarize the definition found in [24]: let S de-
note the set of plagiarism cases in the corpus, and let R denote the set of detections
reported by a plagiarism detector for the suspicious documents. To simplify notation, a
plagiarism case s = 〈splg, dplg, ssrc, dsrc〉, s ∈ S, is represented as a set s of references
to the characters of dplg and dsrc, specifying the passages splg and ssrc. Likewise, a
plagiarism detection r ∈ R is represented as r. Based on this notation, precision and
recall of R under S can be measured as follows:

prec(S,R) =
1

|R|
∑
r∈R

|
⋃

s∈S
(s u r)|
|r|

, rec(S,R) =
1

|S|
∑
s∈S

|
⋃

r∈R
(s u r)|
|s|

,

where s u r =

{
s ∩ r if r detects s,
∅ otherwise.

Observe that neither precision nor recall account for the fact that plagiarism detectors
sometimes report overlapping or multiple detections for a single plagiarism case. This
is undesirable, and to address this deficit also a detector’s granularity is quantified as
follows:

gran(S,R) =
1

|SR|
∑
s∈SR

|Rs|,

where SR ⊆ S are cases detected by detections in R, and Rs ⊆ R are detections of s;
i.e., SR = {s | s ∈ S∧∃r ∈ R : r detects s} and Rs = {r | r ∈ R∧r detects s}. Note
further that the above three measures alone do not allow for a unique ranking among
detection approaches. Therefore, the measures are combined into a single overall score
as follows:

plagdet(S,R) =
F1

log2(1 + gran(S,R))
,

where F1 is the equally weighted harmonic mean of precision and recall.

Analysis of the plagdet Score. The plagdet score has been criticized to put too much
weight on granularity instead of precision and recall, thus ranking plagiarism detectors
differently than a human would. We stress that plagdet was not meant to be the single
yardstick of evaluation and that—just as with the Fα-Measure—one should always look
at individual performance measures to judge an algorithm’s performance. Though a
number of experiments were conducted to verify the score, we did not continue research
in this direction, until now. Inspired by the experiments of Grozea and Popescu [11], we
now close this gap and shed further light on how plagdet ranks plagiarism detectors.

Grozea and Popescu have identified a situation in which plagdet ranks two hy-
pothetical plagiarism detectors in a possibly counterintuitive way. The situation in-
volves one detector A with the performance characteristic 〈precA = 1, recA =
0.5, granA = 1〉 and another detector B with the characteristic 〈1, 1, 2〉.11 In plain
terms, given a single plagiarism case, detector A would detect half of it in one piece,
whereas detector B would detect the entire plagiarism case in two pieces. The plagdet

11 In Grozea and Popescu’s example, B’s performance characteristic is first defined as 〈1, 1, 3〉,
but later the granularity is changed to 2. For consistency, we set granularity to 2 right away.



score of detector A is 0.67, and that of detector B is 0.63, so that A is ranked higher
than B. It is debatable which of the two plagiarism detectors humans prefer in general,
the one that detects a part of each plagiarism case in one piece, or the one that detects
entire plagiarism cases in many pieces. Incidentally, the introduction of the granular-
ity measure forced developers of plagiarism detectors for the first time to actually care
about how often a single plagiarism case is detected. But for argument’s sake, we fol-
low the reasoning of Grozea and Popescu that this ranking is counterintuitive; they then
generalize from the above example and claim that plagdet ranks two plagiarism detec-
tors A and B always counterintuitive if precA = precB , recA < recB , granA = 1,
and granB > 1.12 Again, in plain terms, their claim is that, under plagdet, a plagia-
rism detector with perfect granularity is always counterintuitively ranked higher than
one with higher recall and less than perfect granularity, when keeping precision fixed.
To further substantiate their claim, Grozea and Popescu present at plot in which they at-
tempt to visualize plagdet’s alleged area of counterintuitivity in precision-recall space:
for this, detector A is fixed at perfect granularity granA = 1, varying precision and
recall. Detector B is fixed at perfect recall recB = 1, a granularity granB = 2,
varying precision in accordance with the above condition precA = precB . Observe
that this setting fulfills the above conditions for counterintuitivity. Next, both detectors’
plagdet scores for pairs of precision and recall are computed, and their differences
plagdetA − plagdetB are visualized at the respective points in precision-recall space
by means of color. The left contour plot of Figure 4 illustrates this procedure.13 Grozea
and Popescu then state that the area above the 0-contour is plagdet’s area of counter-
intuitivity (i.e., the plagdet of detector A is better than that of detector B). Moreover,
it is claimed that, because of the area above the 0-contour filling more than 50% of
the precision-recall space, the alleged problem is severe, presuming the probability of
reaching a given point in precision-recall space is evenly distributed.

In what follows, we pick up the analysis where Grozea and Popescu left off and
show that the problem is in fact not that severe. To begin with, observe that the entire
left half of the precision-recall space, where precision is below 0.5, is not interesting
in practice. This area corresponds to plagiarism detectors for which more than half
of the text reported as plagiarism actually is not plagiarized. To be considered useful,
a detector should achieve precision at least above 0.5. The ranking of poor perform-
ing detectors below that is unimportant. Further note that, when the recall of detector A
approaches the perfect recall of detector B, their ranking becomes less and less counter-
intuitive until, at perhaps recA = 0.8, humans would start preferring detector A over B
for A’s perfect granularity and despite its less than perfect recall. Say, the higher the
recall, the more important other performance measures become. These considerations
significantly reduce the size of the critical area in the precision-recall space, as shown
left in Figure 4. However, the critical area can be reduced even further when adjusting
detector B to be more realistic. When choosing recB = 0.7 which is the best recall
achieved this year, and granB = 1.1, which is this year’s average granularity (exclud-

12 Grozea and Popescu add another condition plagdetA > plagdetB , which follows directly
from the above conditions and can hence be omitted.

13 The plot of Grozea and Popescu shows only the contour labeled 0, say, the line at which the
ranking of A and B under plagdet switches.
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Figure 4. Contour plots of the differences of the plagdet scores of two plagiarism detectors A
and B in the precision-recall space. The left plot shows the situation when setting granA = 1,
recB = 1, granB = 2, and precA = precB . The right plot shows the situation when setting
granA = 1, recB = 0.7, granB = 1.1, and precA = precB . The line markings delineate a
critical area in which detectors A and B might be ranked counterintuitively under plagdet.

ing the detector of Jayapal [14]), the resulting plagdet differences of detectors A and B
are less pronounced (see right plot in Figure 4). Still, a precision below 0.5 remains un-
interesting, and a recall recA > 0.7 violates the above condition that recA < recB .
Thus, the critical area becomes much smaller than before, and even more so when taking
into account that, when recA approaches recB , Grozea and Popescu’s claim that rank-
ings within the critical area are always counterintuitive turns out to be false. Moreover,
the actual plagdet differences between detectors A and B are much smaller than 0.1, so
that rankings of more than one detector may only be affected locally, but not globally.

Altogether, we conclude that the problem of possible counterintuitive rankings of
plagiarism detectors under plagdet is not as severe as previously thought. Hence, we
believe that introducing a new hyper-parameter to counter this issue—as is proposed
by Grozea and Popescu—is not of primary concern, and would only add confusion. In
general, however, there is still a lot of room to improve existing performance measures
and to invent new ones. In the future, we will again take a closer look in this direction.

3.2 Survey of Detection Approaches

Eleven of the 15 participants submitted softwares for the detailed comparison task, ten
of whom also submitted at notebook describing their approach. An analysis of these
notebooks reveals a number of building blocks that were commonly used to build de-
tailed comparison algorithms: (1) seeding, (2) match merging, and (3) extraction filter-
ing. In what follows, we describe them in detail.



Seeding. Given a suspicious document and a source document, matches (also called
„seeds”) between the two documents are identified using some seed heuristic. Seed
heuristics either identify exact matches or create matches by changing the underlying
texts in a domain-specific or linguistically motivated way. Rationale for this is to pin-
point substrings that altogether make up for the perceived similarity between suspicious
and source document. By coming up with as many reasonable seeds as possible, the
subsequent step of „growing” them into aligned passages of text becomes a lot easier.

A number of seed heuristics have been applied by this year’s participants: Kong
et al. [17] use sentences from the suspicious and source document whose surrounding
passages have a similarity above some threshold and whose sentence-overlap is above
another threshold. Suchomel et al. [32] use sorted word 5-grams and unsorted stop word
8-grams (the latter having been introduced in [30]). Grozea and Popescu [11] and Ober-
reuter et al. [19] use char 16-grams and char 18-grams. Rodríguez Torrejón and Martín
Ramos [28] use sorted word 3-grams and sorted word 1-skip-3-grams. Palkovskii and
Belov [20] use word 3-grams, Küppers and Conrad [18] use non-overlapping 250 char
chunks whose word-based similarity under Dice’s coefficient is above some threshold,
Sánchez-Vega et al. [29] use single words, and Jayapal [14] uses char n-grams where
n ranges from 3 to 15. Before computing seeds, some participants choose to collapse
whitespace, reduce cases, remove stop words, and stem the remaining words, if appli-
cable to their respective seed heuristics. However, the idea of synonym normalization
used in previous years appears to have been forgotten or discarded.

Match Merging. Given seed matches identified between a suspicious document and
a source document, they are merged into aligned text passages of maximal length be-
tween the two documents which are then reported as plagiarism detections. Rationale
for merging seed matches is to determine whether a document contains plagiarized pas-
sages at all rather than just seeds matching by chance, and to identify a plagiarized
passage as a whole rather than only its fragments.

Most of the participants’ match merging heuristics are rule-based, merging seeds
into aligned passages if they are adjacent in both suspicious and source document and
the size of the gap between them is below some threshold. The exact rule depends on
the seeds used, and instead of using just one rule, many participants develop sets of con-
straints that have to be fulfilled by aligned passages in order to be reported as plagiarism
detections. Since the rules are usually highly involved with their respective setup, we
exemplify only one rule set here in order to give an idea of what they may look like:
Suchomel et al. [32] employ a 2-step merge heuristic, where in the first step, adjacent
seed matches that are no more than 4000 chars apart are merged. The resulting pas-
sages from the first step are then merged again, considering pairs of adjacent passages
in turn, and checking if the gap between them contains at least four seeds so that there is
at least one seed per 10 000 chars of gap length between them. To be merged, adjacent
passages further have to fulfill the constraints that their gap is smaller than 30 000 chars,
that their combined size is bigger than twice the gap size, and that the ratio of seeds per
chars of the adjacent passages does not drop by a factor of more than three in the po-
tentially merged passage. The only participants who go beyond rule-based merging are
Grozea and Popescu [11], who combine rules with randomization, and Palkovskii and
Belov [20], who employ clustering algorithms for unsupervised merging.



Passage Filtering. Given a set of aligned passages, a passage filter removes all aligned
passages that do not meet certain criteria. Rationale for this is mainly to deal with
overlapping passages and to discard extremely short passages. Kong et al. [17] discard
passages whose word overlap under a modified Jaccard coefficient is below a threshold.
Suchomel et al. [32] discard overlapping passages that are shorter than 300 chars, and
keep only the passages longer than 300 chars. Oberreuter et al. [19] discard passages
shorter than 120 chars and Palkovskii and Belov [20] discard passages shorter than
190 chars. Gillam et al. [7] discard passages shorter than 50 words that have less than
0.75 cosine similarity under a vector space model. The other participants do not apply
passage filtering.

Remarks. Since seven of this year’s participants have taken part in previous competi-
tions as well, many of them have simply reused their earlier solutions, some repeatedly.
Others have simply used existing algorithms like greedy string tiling and BLAST out
of the box. While there is no problem with doing so, this indicates that participants are
maybe at a loss about how to further improve their approaches or devise new ones. That
said, the winning approach of Kong et al. [17] is entirely new to the competition, but
unfortunately no details are disclosed about it because of a patent pending.

The detailed comparison of documents for plagiarism detection is closely related
to sequence alignment in bioinformatics, of which the terminology used above is bor-
rowed. Oberreuter et al. [19] are the first to explore this connection by applying one of
the algorithms from the well-known BLAST family. Moreover, a number of new ideas
could be observed:

– Sánchez-Vega et al. [29] apply scored seeding and merge seed matches based on
their scores instead of just their proximity. This idea is also relates to sequence
alignment algorithms.

– Palkovskii and Belov [20] and Jayapal [14] try to adjust their approaches differently
based on the situation at hand (i.e., based on how strong a plagiarism case is obfus-
cated). Although the two approaches, in their current state, are not that successful,
this idea points into a promising new direction for tailoring detailed comparison
algorithms to certain situations instead of developing a one-fits-all approach.

– Suchomel et al. [32] and Palkovskii and Belov [20] are the first to employ more than
one seed heuristic at the same time. This shows that combining multiple sources of
information may further help to devise better detailed comparison algorithms.

– Suchomel et al. [32] and Palkovskii and Belov [20] merge seed matches not in
one but two steps. This iterative merging of seeds allows for using different merge
heuristics at different levels of abstraction, thus reducing the risk of making errors.
Again, a one-fits-all approach is probably more difficult to develop and maintain.

Finally, regarding the detection of cross-language plagiarism, most participants simply
resorted to using the translated version of a document obtained from Google Translate
which was provided as an additional parameter in the test phase. Some disregarded
non-English cases altogether, while only Rodríguez Torrejón and Martín Ramos [28]
continued to develop their own dictionary-based solution.



Table 3. Implementation details of the detailed comparison submissions, sorted by runtime.

Team Submission Operating Programming Average Runtime
Size [MB] System Language [sec/comparison]

Rodríguez Torrejón 1.80 Linux sh, C/C++ 0.19
Sánchez-Vega 0.04 Linux C++ 2.48
Oberreuter 0.19 Linux Java 2.58
Palkovskii 68.20 Windows C# 4.51
Grozea 1.90 Linux Perl, Octave 4.82
Suchomel 0.02 Linux Perl 5.36
Kong 2.60 Linux Java 5.91
Jayapal 37.20 Linux Java 8.43
Gillam 0.48 Linux Python 2.7 9.40
Küppers 42.90 Linux Java 27.64
Ghosh 554.50 Linux sh, Java –

3.3 Evaluation Results

The softwares submitted to the detailed comparison subtask vary widely with respect
to their sizes, employed programming languages, and runtime performances (cf. Ta-
ble 3 for details). Regarding runtime, the submission of Rodríguez Torrejón and Martín
Ramos [28] is outstanding: it achieves 0.19 seconds per comparison, which is an order
of magnitude faster than all other submissions. The two fastest approaches are both im-
plemented in C/C++. Note that we always tried to run a submission on a Linux system
and resorted to Windows only if necessary.

Table 4 shows the detection performances of the ten evaluated detailed comparison
approaches. Besides the overall performance on the complete evaluation corpus (first
value in brackets), also the performance on each sub-corpus is given (remaining values
in brackets). Note that for the sub-corpus without plagiarism, no performance values
can be stated due to the lack of true positives. However, false positive detections for
this sub-corpus influenced the overall performance of course. The winner of this year’s
detailed comparison task is the approach by Kong et al. [17], which achieves the highest
plagdet score on the complete corpus, the real cases, the simulated paraphrase cases, as
well as on the cross language cases. The best performing approach on the artificial para-
phrase cases (both high and low) was submitted by Oberreuter et al. [19], whose overall
performance suffered from a bad performance on the cross-language cases. Suchomel
et al. [32], who submitted the second best approach, performed best on the plagiarism
cases without any obfuscation. Regarding real plagiarism cases, the ranking from the
second place onwards would change; here, Rodríguez Torrejón and Martín Ramos [28]
achieve the best recall. Most approaches perform better on real plagiarism cases com-
pared to their overall performance. However, these results must be taken with a grain of
salt, since the statistical mass of 33 real cases is too small to claim good performance
in detecting real plagiarism. Nevertheless, the inclusion of real cases adds more realism
to our evaluation, and we strive to scale up their number in the future.
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4 Summary

To sum up the fourth international competition on plagiarism detection at PAN’12, we
have introduced a number of novelties: a new evaluation framework that approaches
plagiarism detection step-wise instead of as a whole, and that allows for software sub-
missions instead of just result submissions. We are the first to consider the heretofore
neglected, yet important scenario of plagiarism detection from the web at a representa-
tive scale. Furthermore, we introduce new tools to evaluate plagiarism detectors, namely
the ChatNoir search engine, and the TIRA experimentation platform. Both allow for as-
sessing a plagiarism detector’s performance based on new measures, such as runtime
and web retrieval performance. We have constructed a new, large plagiarism corpus
based on crowdsourcing that consists of entirely manually written plagiarism cases.
Our corpus construction pipeline emulates the entire process of plagiarizing text from
the web in a controlled environment. The data collected allows for a first time glimpse
over the shoulders of plagiarists. Finally, we have used real plagiarism cases to evaluate
detection performance, which was made possible by our new evaluation tools that do
not require test data to be handed out to participants. Otherwise, the use of real plagia-
rism for evaluation would cause legal and ethical problems.

We have demonstrated that a step-wise evaluation of plagiarism detectors is the way
forward, whereas the two plagiarism detection subtasks candidate retrieval and detailed
comparison pose new challenges for evaluation. In the coming competitions, we plan
on improving our evaluation framework in order to reach a new stable point at which
evaluations within the framework can be run smoothly out of the box. In particular,
we will encourage software submissions not only for detailed comparison but also for
candidate retrieval, again using the TIRA experimentation platform to facilitate this
goal. Our vision is to implement a fully automatic, web-based plagiarism detection
evaluator, available to all researchers in this field.
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