Improving the Reproducibility of PAN’s Shared Tasks:

Plagiarism Detection, Author Identification, and Author Profiling

Martin Potthast,! Tim Gollub,' Francisco Rangel,?? Paolo Rosso,>
Efstathios Stamatatos,* and Benno Stein!

!Web Technology & Information Systems, Bauhaus-Universitit Weimar, Germany
2 Autoritas Consulting, S.A., Spain
3Natural Language Engineering Lab, Universitat Politecnica de Valéncia, Spain
“Dept. of Information & Communication Systems Engineering, University of the Aegean, Greece

pan@uebis.de http://pan.webis.de

Abstract This paper reports on the PAN 2014 evaluation lab which hosts three
shared tasks on plagiarism detection, author identification, and author profiling.
To improve the reproducibility of shared tasks in general, and PAN’s tasks in par-
ticular, the Webis group developed a new web service called TIRA, which facili-
tates software submissions. Unlike many other labs, PAN asks participants to sub-
mit running softwares instead of their run output. To deal with the organizational
overhead involved in handling software submissions, the TIRA experimentation
platform helps to significantly reduce the workload for both participants and or-
ganizers, whereas the submitted softwares are kept in a running state. This year,
we addressed the matter of responsibility of successful execution of submitted
softwares in order to put participants back in charge of executing their software
at our site. In sum, 57 softwares have been submitted to our lab; together with the
58 software submissions of last year, this forms the largest collection of softwares
for our three tasks to date, all of which are readily available for further analysis.
The report concludes with a brief summary of each task.

1 Introduction

The term “shared task™ refers to computer science events that invite researchers and
practitioners to work on a specific problem of interest, the task.! The goals of a shared
task may be threefold: (1) to foster the development of new theories and approaches at
solving the task, (2) to implement a suited software, and (3) to evaluate the currently
achievable performance. A shared task gives rise to a controlled laboratory experiment
where contesting softwares are the test subjects. Within the experiment a possibly large
number of problem instances of the task have to be solved, whereas the solutions of
the competing softwares are compared to the true solutions. If the problem instances
are representative of the population of (real-world) problem instances, the achieved
performance of a software allows for judging its merits with regard to being applied in
practice, as well as the validity of its underlying approach.

! Typical terms used in this regard are: campaign, challenge, competition, contest, or cup.

1985 1990 1995 2000 2005 2010 2015
85 87 89 91 93 95 97 99 01 03 05 07 09 11 13 15

Muc DISC buc Text synthesis,
QAEI Question answering
Blizzard
TAC
TREC Information retrieval,
CLEF Text mining
INEX
PASCAL FIRE
LSHTC
SUMMAC NTCIR Information extraction
TDT SEMEVAL Semantic analysis,
ACE GESTALT Topic detection and tracking
ARC NIST-MT Natural language processing,
CONLL Machine translation,
WePS Named entity recognition
SQALE TRECVid Speech recognition,
TC-STAR MediaEval Multimedia processing

§TD

Figure 1. The last thirty years of shared tasks in the human language technologies.

Though shared tasks have a long tradition in computer science, only little is written
about them. Open questions include: What are best practices to set-up a shared task?
How to measure its success? What determines its success? As a step towards answering
these and related questions, we have compiled an overview of well-known shared tasks
in the Human Language Technologies, which is depicted in Figure 1.

1.1 Contrasting Shared Tasks by Submission Type

Our review of shared tasks in the human language technologies reveals that such tasks
have been unanimously organized in the same way. Task organizers prepare a corpus
comprising problem instances, where parts of the corpus are published as training data
(including the ground truth) and test data (without the ground truth) respectively. Task
participants develop software that solves the task based on the training data and finally
run their software on the test data. Within most shared tasks, the output of this final soft-
ware run (usually called a run, for short) is submitted to the organizers. The organizers,
in turn, evaluate the submitted runs using previously announced performance measures
against the ground truth of the problem instances in the test data set.

To reach higher levels of automation and reproducibility, participants may submit
their executable software, this way enabling the organizers to generate runs by them-
selves. This approach, which we call “managed software submission,” entails a lot of
communication overhead and other problems, caused by the fact that now the organiz-
ing site becomes part of the software test cycle. These disadvantages are addressed by a
third kind of submission type, here called “participant-in-charge software submission,”

Corpus (and what may be published to participants)

- Training data Test data
Ui CELES ground truth ESEEE) ground truth
Software (and what may be submitted by participants)

Software Software Software
source executable run
Submission type

Participant Organizer Run submission
Participant Organizer Managed software submission
Participant ALY, Organizer Participant-in-charge software submission

Figure 2. From top to bottom: Task organizers develop a corpus from which certain parts are
published to participants. The participants in turn develop softwares from which certain parts
are submitted. The extent of what is published/submitted defines the submission type: run sub-
mission, managed software submission, or participant-in-charge software submission. The last
submission type enables participants to submit, execute, and optimize their softwares, using an
experiment platform (such as TIRA) provided at the organizer’s site, whereas the experiment
platform manages a software’s access to the test data set.

where a fully-fledged experiment platform is provided at the organizer’s site for each
participant. Though this approach is technically the most advanced, it comes along with
appealing advantages: the softwares can be tested and optimized by the participants, as
well as accessed, run, and archived for documentation and re-run purposes by the orga-
nizers. See Figure 2 for an illustration of the three submission types.

1.2 Related Work

The human language technologies were at the forefront of organizing shared tasks, with
early initiatives dating back to the 1980’s. Figure 1 places each initiative on a time line
according to its primary research focus. Note that today’s most established evaluation
campaigns, CLEF, CONLL, INEX, NTCIR, TREC, and TRECVid, run successfully for
over ten years now, each of them hosting up to dozens of specific shared tasks. The
value that shared tasks provide for their respective research fields has been pointed out
by Chapman et al. [7]. Most notably, shared tasks push the standardization of evaluation
metrics and data formats, provide annotated data sets and benchmarks, foster the coop-
eration between academia and industry, and constitute a well defined entry point and
forum for getting involved in a particular research field. The scientific impact of shared
tasks has been attested by Tsikrika et al. [63], who analyzed the citation graph of CLEF
publications. Despite their general acceptance, there are also critical voices concerning
shared tasks [4,56,57]. The general argument brought forward is that shared tasks turn
research fields with a great diversity of streams and ideas into a single, oversimplified
task, with fixed inputs and gold-standard outputs, and a single automatic performance

metric. In addition, repeated shared tasks bear the risk that the developed approaches
converge on the approach that showed most success in previous evaluations. Moreover,
Potthast ef al. [44] observe that participant do not necessary improve upon the perfor-
mance of their first approach when they participate repeatedly. Given these concerns,
the question is which factors influence the success or failure of shared tasks in push-
ing forward a research field. To the best of our knowledge, this question has not been
answered, yet, within a rigorous scientific evaluation.

1.3 Contributions

This paper reports on the latest results of our efforts to improve the reproducibility of
shared tasks in general, and that of PAN’s three shared tasks in particular, namely pla-
giarism detection, author identification, and author profiling. We introduce the TIRA
experimentation platform as a web service for shared tasks: it implements a participant-
in-charge software submission platform that hands the responsibility of successful soft-
ware execution back to participants. This way, inviting software submissions for a
shared task becomes significantly less cumbersome, and, given further development,
it may reduce the work overhead to a point at which inviting software submission may
become as straightforward as inviting run submissions has been previously.

All of the above has not been developed haphazardly, but the development process
was tightly integrated with PAN over the past years, using our lab as a beta testing plat-
form for our developments. While first plans for TIRA have been discussed long ago,
at PAN 2012 we first invited managed software submissions for one of PAN’s shared
tasks. Based on this experience, developments commenced which allowed us to scale
managed software submissions to all three of PAN’s recurring shared tasks in 2013,
whereas this year marks the introduction of participant-in-charge software submissions
based on the TIRA web service. This way, we can not only claim to have developed
the first participant-in-charge software submission platform, but also that this platform
is battle-tested based on handling three demanding shared tasks with more than 100
software submissions in total since 2012.

2 TIRA: A Web Service for Shared Tasks

This section reports on our efforts to minimize the organizational overhead of soft-
ware submissions and the ongoing development of the TIRA experimentation plat-
form [14,15]. For three years in a row, our lab has invited software submissions, and
for the second time, this was done for all shared tasks. This year, 57 softwares have
been submitted to our three tasks all of which were handled using TIRA. In previous
work we identified challenges that handling software submissions at scale entail [13]:
(1) development environment diversity, (2) untrusted software execution, (3) data leak-
age, (4) error handling, (5) execution responsibility, and (6) execution cost. Until last
year, the first three challenges have been our primary concern, while the focus of this
year is on the two challenges of error handling and execution responsibility. Our long-
term goal is to make inviting software submissions for shared tasks as simple as inviting
run submissions, avoiding the deficiencies of the latter while adding the benefits of the

former. All of these efforts are consolidated by developing TIRA’s evaluation tools that
facilitate software submissions and shared tasks in general. For the first time, we pro-
vide public access to these tools via a new web front end.?

2.1 Software Submissions: Who is Responsible for their Successful Execution?

A major obstacle to a widespread adoption of managed software submissions in shared
tasks is the shift of responsibility for a successful software execution. Submitted soft-
ware is not necessarily free of errors—even more, experience shows that the majority of
the participants submit their software prematurely, yet, being convinced from its flaw-
lessness. This fact lets organizers unwillingly become part of the debugging process of
each participant’s software, whereas the turnaround time to find and fix errors increases
severely, especially when both parties are not working simultaneously (i.e., reside in
different time zones). Failure on the part of organizers to run a submitted software,
to check its output for errors of any kind (e.g., not every execution error results in a
crash), and to give participants feedback in a timely manner may cause participants
to miss submission deadlines. The risk of this happening is increased by the fact that
many participants start working only just in time before a deadline, so that organizers
have to handle all submissions at the same time. Besides, prolonged back-and-forth be-
tween participants and organizers cause by software errors bears a high potential for
friction. As a result, organizers may come to the conclusion they have little to gain but
trouble, whereas the benefits of software submissions, such as reproducibility, may be
considered insufficient payback.

In previous years, we experienced the following with managed software submis-
sions [13]: to get the 58 softwares submitted in 2013 running for evaluation, 1493 mails
had to be exchanged in order to fix runtime errors. It must be noted, though, that we
were working hand-in-hand with participants, and that, surprisingly, most participants
were not at all disgruntled by having to revisit their software over and over again to
fix errors. While our previous versions of TIRA have helped us to manage software
submissions in an organized manner, our goal now is to put participants back in charge
of their own software (see Figure 2). Therefore, we develop user interfaces for TIRA,
which allow participants to remotely control software execution and to collect runtime
feedback, thus eliminating the need for organizers to intervene in fixing software exe-
cution errors. Figure 3 illustrates the interfaces provided to both parties.

In what follows, both the user interfaces and the workflow of participants and orga-
nizers to complete a shared task are described in detail.

2.2 Life of a Participant

From the perspective of a participant (Alice, in the following), a software submission
via TIRA happens within three basic steps: first, deployment of the software to a given
virtual machine, second, configuration of the software for remote execution, and third,
remote execution of the software on the available training and test data. The interfaces
on the left side of Figure 3 are used for this purpose, whereas the latter two steps are

2 http://www.tira.io

P/ S W

Task
market
W _UNC b
F ﬁ TIRA Task =
H SSH config.
s il [P s
= - VM N
Software : Soft- Task
and runs o[review
I XéR _______ Restricted :
— access (L)
Participant Execution Participant Organizer
progress review
Run Run
o '
= review
I Evaluation I
results

Figure 3. TIRA’s interfaces for participants (left), organizers (right), and the public (top, bottom).

accomplished via TIRA’s new web interface. The web interface marks an important step
forward in terms of putting Alice in charge of deploying her software: it ensures that
Alice neither gains direct access to the test data nor to the ground truth of a shared task,
but it still allows her to evaluate her software and to obtain filtered runtime feedback.
In this regard, TIRA serves as a remote control for evaluation.

TIRA encapsulates Alice’s software in a virtual machine that is set up once she
registers for a shared task. As depicted in Figure 3, Alice has two ways to access her
virtual machine, namely a remote desktop connection and an SSH connection. Alice
retains full administrative rights inside her virtual machine, so that she can set up her
preferred development environment and deploy her software. To prevent misuse, virtual
machines are not allowed to communicate with each other, and, their outgoing band-
width is limited. By default, virtual machines have only restricted access to TIRA’s
database, so that only the training data of each task can be read. Once a software has
been successfully deployed and tested manually, participants use TIRA’s web interface
to complete the second and third step outlined above.

For each participant of a shared task, TIRA serves a remote control page for the
respective virtual machine, the deployed software, and the software runs. After signing
in with her account for the first time, Alice can configure the execution details of her
software. Figure 4 shows Alice’s software control page in a state after completed con-
figuration and a few successfully executed runs. The software control page is divided
into four panels:

@ virtual Machine

Qperating System Ubuntu (64 bit)
RAM 4036MB
CPUs 1
State running (since 2014-06-22 09:00:00)
Sandbox state publicly accessible
Hest example.com
SSH Port 44401 I
RDP Port 55501

¥ Software 1
Command JmySoftware -i SinputData -o SoutputDir
The variables : = and r refer to the below parameters; the
command must include the variable ir . All of these variables will point
to directories.
Input data training-data T
Input run none v

Runs on test corpora are excluded from this list.

Waorking directory fhomel

¥ Evaluation

Measures precision, recall, accuracy

Input run software! 2014-06-22-12-00-00 test-corpus r

Ewvaluator runs are excluded from this list.

W Runs
Software Run Input data Input run Runtime Size Actions
evaluation 2014-06-22-12-10-00 test-data 2014-06-22-12-00-00 00:00:04 24 @ OE

software! 2014-06-22-12-00-00 test-data none 00:01:54 22M @O
software! 2014-06-22-11-00-00 training-data none 000154 22M 9OE
software! 2014-06-22-10-00-00 training-data none 0003 1M 9OE

Figure 4. TIRA’s web interface for participants to remote control the execution of their software
and to review their runs for a given shared task.

Virtual Machine Overview of the virtual machine, including information about the
operating system, RAM, CPUs, its running state, VM host, and connectivity. The
virtual machine can be turned off at the click of a button either by sending a shut-
down signal to the operating system, or by powering it off. Clicking “Add Software”
creates a new software panel. Alice may deploy an arbitrary number of softwares
for the shared task onto her virtual machine, e.g., to compare different paradigms
or variants of an approach at solving the task. Each software can be configured
individually on the software control page.

Software 1 Configuration of a software that has been previously deployed on the vir-
tual machine. The software must be executable as a POSIX-conform command line.
Mandatory parameters can be defined by organizers of the shared task. In this case,
they include variables for input data and the output directory, and optionally for an
input run (i.e., a previous run of one of Alice’s softwares). If necessary, the work-
ing directory in which the program shall be executed can be specified. Alice may
adjust an existing software configuration and save its state, she may delete it, or she
may proceed to execute the software. Note that if Alice deletes a software it is not
actually deleted on the server, but only hidden from view; rationale for this is to
allow organizers to reconstruct Alice’s actions for reasons of cheating prevention.
The runs obtained from running a software are listed in the “Runs” panel.

Evaluation Run an evaluation software on a given run. This is a special type of soft-
ware provided by task organizers which processes an input run and outputs the
results of the task’s performance measures. Once Alice has finished her first suc-
cessful run on a given input data, she uses this panel to evaluate it. The runs obtained
from an evaluation software are also listed in the “Runs” panel.

Runs List of runs that have been obtained either from running a software or from run-
ning an evaluation. The table lists run details including software, timestamp (which
also serves as run ID), input data, input run, runtime, size on disk, and further ac-
tions that can be taken. The colorization indicates a run’s status with regard to being
successful, where red indicates severe errors, yellow indicates warnings, green indi-
cates complete success, and white indicates that the run has not yet been reviewed.
Runs are checked automatically for validity with the shared task’s expected out-
put format, and they may be reviewed manually by organizers. Actions that can
be taken on each run include viewing more details (the blue i-icon), downloading
it (the black arrow down), and deleting it (the red x). It is here where Alice first
encounters the limitations that TIRA imposes for runs on test data sets: all test
data sets are by default hidden from participants, which is why all possible com-
munication channels about test data must be filtered or closed as well. Therefore,
TIRA prevents Alice from downloading runs on test data sets (the download action
shown grayed is inactive) to foreclose that a malicious software outputs the data
itself instead of output that is valid for a given shared task.

The software control page does not display all of the aforementioned panels immedi-
ately, but only after Alice has completed the necessary steps. At first, it only shows the
virtual machine panel; then, once Alice clicks on “Add Software”, a software panel ap-
pears; and finally, once Alice runs her software for the first time, the evaluation panel
and the runs panel are added after the run is completed. While a software is running, the

@ virtual Machine

Operating System
RAM

CPUs

State

Sandbox state
Host

SSH Port

RDP Port

Software Running

Ubuntu (64 bit)

40%6MB

1

running (since 2014-06-22 09:00:0:0)
sandboxed

example.com

44401

59301

Add software Shutdown Power off

You started a software on your virtual machine. Only one software can be started at a time. Therefore,
access to this contrel panel is limited until the software is finished. Dependent on its type, the size of the
input data involved, and the software’s performance characteristics, the completion of this process may

take some time.

Software
Command
Input data

Input run
Run

State
Runtime
Last output
RAM used
CPU load

software!

JmySoftware -i SinputData -o SoutputDir
test-data

none

2014-06-22-12-00-00

running

0:00:36

2014-06-22 12:00:30

3127 MB

98.00%

Figure 5. TIRA’s web interface to monitor the progress of a running software.

software control page is replaced with the software progress monitoring page which is
divided into two panels, as exemplified in Figure 5:

Virtual Machine Just as on the software control page, the virtual machine panel shows

the current state of Alice’s virtual machine while the software is running. Before
a software is started, the virtual machine is moved into a so-called sandbox: the
machine is disconnected from the Internet so that no outside connections are possi-
ble, a snapshot is taken to save the machine’s state before the software is executed,
and, the input data is mounted read-only into the virtual machine as a shared folder.
This sandbox state is indicated to Alice in the corresponding list entry as well as
by the connectivity flags. Only if a machine has been successfully moved into the
sandbox, the software is executed. While a software is running, the buttons to add
a software configuration panel as well as those to shutdown or power off the virtual
machine are deactivated so that the running software is not interrupted acciden-
tally. After the software terminates, the output is stored in TIRA’s database as a
run, and the virtual machine is automatically moved out of the sandbox: the input
data is unmounted, the virtual machine is restored to the state of the snapshot that
was taken just before it was moved into the sandbox, and then it is reconnected to
the Internet. Restoring the virtual machine to the snapshot taken ensures that no
information about the input data remains in the virtual machine, be it in cache, in

temporary files, or in purposefully hidden files. Disconnecting the virtual machine
from the Internet while a software is executed ensures that no data can be sent to
an unauthorized third party.

Software Running Overview of a running software, including the software’s ID, the
executed command, the parameters, the run ID, and the running state. Moreover,
the current runtime, the time of the last write access to the output directory, the
currently used RAM, and the CPU load are displayed and updated periodically.
This way, Alice has a way of making sure her software is still working. If, for any
reason, Alice wishes to kill her software before it terminates by itself, she may
click on the “Kill” button. Before the software is killed, its output up to this point
is stored in TIRA’s data base as an incomplete run for later inspection.

After her run has completed and the virtual machine has been moved out of the
sandbox, Alice’s browser shows the software control page again as in Figure 4. The
new run appears in the runs table. To make sure the run was successful, Alice clicks on
the i-icon which redirects her to a run details page for the run in question, as shown in
Figure 6a. The details shown about a run are as follows:

Overview Details about the run, including the software that was used, the run ID, pa-
rameters, whether the run can be downloaded, runtime details, its size, and the
numbers of lines, files, and directories found. Whether the run can be downloaded
depends on whether the input data was a test data set or not. As outlined above,
runs on test data sets, by default, cannot be downloaded to foreclose data leakage.
Besides the runtime, more in-depth runtime details are given, so that Alice can
judge whether her software made good use of the hardware available to the vir-
tual machine. For example, if she finds there are many page faults or even swaps,
this indicates the software uses too much memory. The size and numbers of lines,
files, and directories provide quantitative feedback to quickly verify output sanity,
whereas it depends on the task which of these values is most illuminating.

Review Review of this run provided by both automatic validation and organizers. In
Alice’s case, an organizer reviewed the displayed run and found that it does not
contain any obvious errors. In case of errors, explanations are displayed here that
give insight into their nature and severity.

Stdout Standard output stream (stdout) which was recorded when executing the soft-
ware. If Alice’s software outputs information to stdout, it will be displayed here.
However, in the case of runs on test data sets, the amount of information that is
displayed can be limited. In the example, the limit is the 100 last chars of the stdout
text. This limitation shall prevent Alice from outputting problem instances to stdout
in order to inspect them. This communication channel can be closed entirely on a
per-data set basis, for example, if confidential data has to be handled.

Stderr Standard error output stream (stderr) which was recorded when executing the
software. While nothing was recorded in the example, the same filtering is applied
as for the stdout stream.

File List Directory tree which displays file names and their sizes found in the run. Alice
may use this information to determine whether her run has output all the files and
directories that are expected, and whether their names and organization are correct.

(a) Details page of a software run.
¢ B Run Details
Cverview

Software softwarei
Run 2014-06-22-12-00-00
Input data test-data
Input run none
Downloadable false
Runtime 00:01:54 (hh:mm:ss)
Runtime details 96.79user 8.79system 1:54.81elapsed 91%CPU (Davgtext+0avgdata
202016maxresident)k 224inputs +4180cutputs (Odmajor+14449minor)pagefaults
(Oswaps
Size 2.2M (154442 bytes)
Lines O
Files 518
Directories 1

Review

Reviewer Bob
Errors None. This run seems to be alright.

Stdout

[...1t516. xml
Processing inputS17.xml
Writing outputSl7. xml
Processing inputS1&. xml
Writing outputS1l&. xml

Mote: The output of software that is run against test data is shortened to
its last 100 chars.

Stderr

File list

test-data/alice/2014-06-22-12-00-00/output
[90] outputl.xml
[257] output?.xml

[90] output517.xml
[255] output318.xml

0 directories, 518 files

| Downioad |

(b) Excerpt of the details page of an evaluation run.

—_————————— T — TN

Stdout

python shared-task-evaluation.py -1 alice/2014-06-22-12-00-00/output -t
test-data -o jtmp/2014-06-22-12-10-00/output/evaluation.txt

"precision™: “XXK"
"recall™: "XXX"

Mote: The output of evaluation runs on test corpora is blinded by default.
A task moderator will decide whether to make the results visible.

Stderr

W

Figure 6. TIRA’s web interfaces for participants to review runs.

The run details page shall provide Alice with the information necessary to deter-
mine whether her remote software execution was successful. Unless the software has
been executed on a test data set, Alice may also download the run for local inspec-
tion. If she is satisfied with the run, she may proceed to evaluate it using the evaluation
software. The resulting evaluation can again be inspected just like before, whereas the
corresponding run details page lists the information pertaining to the evaluation soft-
ware’s run when receiving Alice’s software run as input. Figure 6b shows an excerpt
of an evaluation run details page that Alice will see. The evaluation software typically
prints the evaluation results directly to stdout, however, in case the evaluated software
run was on a test data set, the results are blinded by default (i.e., the performance values
are replaced by “XXX”). Our rationale for blinding the evaluation results is twofold:
(1) participants of shared tasks are not supposed to see their software’s performances
before the task organizers decide to publish them, and, (2) participants are not supposed
to optimize their software against the test data, for example, by means of trial and error.
This way, the decision of when, if, and how the evaluation results of a given shared task
are released is at the full discretion of its organizers. Moreover, just as with filtering
stdout and stderr output, the organizers may adjust blinding on a per-data set basis.

After completing her evaluation run, Alice is done; she has submitted her software
to the virtual machine, made sure it works to the specifications of the shared task by
running it on the available data sets and inspecting the runs for errors, and finally exe-
cuted the evaluation software on her previous software runs. While Alice can now relax,
it is time for the organizers of the shared task to get busy.

2.3 Life of an Organizer

From the perspective of an organizer (Bob, for example), using TIRA to manage soft-
ware submissions for a shared task can be done in three simple steps: first, configuration
of the shared task in TIRA; second, supervision of participant progress; and third, com-
pilation and publication of the task’s evaluation results. The interfaces on the right side
of Figure 3 are used for this purpose. The configuration of a shared task in TIRA is
done in a text-based configuration file. Configurable aspects include the data sets and
their privacy settings as outlined in the previous section, the evaluation softwares, the
command line parameters required for submitted softwares, and various messages dis-
played on task-specific web pages. The web interface for task configuration basically
displays the configuration file as is and allows for editing it; we omit a screenshot for
brevity.

In terms of supervising his shared task while it is underway, Bob has three interfaces
at his disposal, an overview of participants who have started to work on the shared task,
an overview of runs of each participant, and the run details of each participant’s runs:

Task Participants (Figure 7a) Overview of participants who have configured at least
one software for Bob’s shared task on their software control page, including their
user name, signed in status, numbers of softwares that are configured, deleted, and
running, and, numbers of runs that are finished, reviewed, and unreviewed. These
figures give Bob an idea of whether the participants of his task are actively engaged,
but it also hints problems that may require Bob’s attention. The number of deleted

(a) Overview of a task’s participants.

A Participants in Shared Task

User Signed in Softwares Deleted Now Running Runs Reviewed Unreviewed Actions

Alice yes 7 B none 63 62 1 &
Carol no 1 0 6 days, 8:37:25 4 3 1 &
Dan no 1 1] nane 5 0 5 Lo
Eve no 3 1 nane 16 16 0 Lo
Frank no 3 1] none 56 56 0 Lo
Mallory no 1 o none 4 0 4 g
Oscar no 1] none 4 0 4 @
Peggy no 1 o none 4 0 4 e
Syhil no 3 2 none 5 5 0 e
Trent no 1] none 4] 4 &

(b) Overview of a participant’s runs.

I Runs of Alice on fest-corpus

Software Run Input run Size Lines Files Dirs Review Actions
evaluation 2014-06-22-12-10-00 2014-06-22-12-00-00 24K 36 1 o todo *>@®
softwarel 2014-06-22-12-00-00 none 22M 5180 518 O done 1 O)
softwarel 2014-06-22-11-00-00 none 22M 51B0 518 O done @@
softwarel 2014-06-22-10-00-00 none 11M 2580 259 O done *>@®
softwarel 2014-06-22-03-00-00°= none 055M 1250 128 O done *>@®
softwarel 2014-06-22-08-00-00°% none 1K 20 2 o done >@®

Figure 7. TIRA’s web interfaces for organizers to review a task’s participants.

softwares may indicate that a participant has trouble setting herself up. In the case
of Alice, six of seven softwares have been deleted, so that it may be the case that
Alice had some trouble getting the software configuration right. In the case of Carol,
Bob observes that her software has been running for more than six days straight,
which may be an indication that the software is not working as anticipated, given
that the expected runtime of a software for Bob’s shared task is a lot lower. Bob
may contact the respective participants and offer his help. Moreover, the number
of unreviewed runs indicates that some runs have not yet been checked for errors
by an organizer. To do so, Bob clicks on the review action (the blue eye-icon in
the Actions column) to review all of Alice’s runs; he is redirected to the participant
runs page described next.

Participant Runs (Figure 7b) Overview of a participant’s runs on a per-data set basis,
including the software that was used, run ID, input run, size, numbers of lines, files,
and directories, and whether a run has been reviewed. The colorization indicates
a run’s status with regard to being successful, where red indicates severe errors,
yellow indicates warnings, green indicates complete success, and white indicates
that the run has not yet been reviewed. Unlike in the runs table on Alice’s software
control page, this table shows figures which relate to judging a run’s success by
checking its size or the numbers of lines, files, or directories against the expectation

< ¥ Run Details
Overview

Software

Run

Input data
Input run
Downloadable
Runtime
Runtime details

Size

Lines

Files
Directories

Review

evaluation

2014-06-22-12-10-00

test-data

2014-06-22-12-00-00

false

00:00:04 (hh:mm:ss)

T.04user 14.32system 0:04.10elapsed 52%CPU (Javgtext+lavgdata
85984maxresident)k Dinputs+16outputs (Omajor+6224minor)pagefaults dswaps
24K (15442 bytes)

36

2

0

This run has not been reviewed, yet.

Reviewer Bob

Errors

) Noerrors

[Missing output

[Extra output

[Invalid output

| Error messages in stdout or stderr

1 Other kinds of errors; please describe them in the comment below.

Comment

Submit

Stdout

python shared-task-evaluation.py -1 alice/2014-06-22-12-00-00/output -t

test-data -o

Stmp/2014-06-22-12-10-00/output fevaluation.txt

"precision": "0,90081"
“recall": "©.57283"
Stderr

File list

test-data/alice/2014-06-22-12-10-00/output /

[248]
[108]

0 directories,

evaluation.prototext
evaluation txt

2 files

Download

Figure 8. TIRA’s web interfaces for organizers to review runs.

for a given data set. Unlike Alice, Bob has access to all of Alice’s runs including
those that have been deleted by Alice. The deleted runs are annotated with the
superscript “DEL.” Moreover, since Bob is task organizer, there are no restrictions
with regard to downloading runs. To review the outstanding unreviewed run, Bob
clicks again on the corresponding review action and is redirected to the run details
page described next.

Run details (Figure 8) The run details page corresponds to that which Alice can ac-
cess. It displays the same information about the run, but there are four differences.
(1) it offers a review form in which Bob can enter his review, (2) the standard output
streams are not filtered, (3) the output of evaluation softwares is not blinded, and
(4) the button to download the run is always activated. Based on the complete infor-
mation about the run, Bob can easily review it, which usually takes only a couple of
seconds. Bob’s review consists of checking for common errors, such as missing out-
put, extra output, output validity, as well as error messages that have been printed
to either standard output stream. These are the common errors that have been ob-
served to occur frequently in previous years [13], whereas Bob has the opportunity
to write a short comment about uncommon errors he observes. Bob can supply run
verification software for his task that checks runs automatically, however, at least
for runs that will be used for the final evaluation results of a shared task, a quick
review should be done to foreclose unforeseen errors. This reduces Bob’s respon-
sibility for the successful evaluation of Alice’s software to a level similar to shared
tasks that invite run submissions.

The supervision duties of task organizers cannot be entirely avoided. In shared tasks
that invite run submission, the organizers usually do not have to intervene until after the
submission deadline. Only then, they learn how many participants actually submit a run
and how many of the submitted runs are valid as to the specifications of the shared task.
In the extreme case, it is only after the run submission deadline, when actual examples
of runs on test data sets are available, that the organizers realize that parts of the data set
or the run formats are unfit for their evaluation goals. With software submissions based
on TIRA, these risks can be minimized since organizers have a chance to observe early
bird participants and make adjustments as the shared task progresses. An added benefit
of supervising a shared task using TIRA is that organizers learn early on how many
participants actually work toward making a submission to the task, whereas with run
submissions, the success or failure of a shared task in terms of number of participants
will only become apparent after the run submission deadline. If Bob were to observe
that only few participants start using TIRA, he may react by engaging with those who
registered but did not start, yet, or by advertising the task some more in the community.

Once the submission deadline passed, and all participants successfully evaluated
their runs on the test data sets of Bob’s shared task, he proceeds to reviewing the per-
formances and publishing the results. For this purpose, TIRA has an overview of all
evaluation runs on a per-data set basis (see Figure 9a):

Evaluations Results Overview of evaluation runs and the performance results ob-
tained, including user name, software, ID of the evaluation run, ID of the software
run that served as input to the evaluation run, and performance values, dependent

(a) Overview of a task’s evaluation results for organizers.

il Evaluations on test-corpus

User Software Evaluation Input run Precision Recall Actions

Aice softwarel 2014-06-22-12-10-00 2014-06-22-12-00-00 090081 067283 DAL

Carol softwared 2014-06-15-17-38-08 2014-06-15-17-35-38 085744 020661 ®@@OQA L

Dan software2®= 2014-06-16-17-17-21 2014-06-16-16-54-38°= 096022 0.84248 ® @@L

Dan softwared 2014-06-23-20-43-59 2014-06-23-20-17-48 096007 0.84511 ® @@L

Dan softwarel 2014-06-16-18-03-43 2014-06-16-17-21-44 096243 0873 ® @@L

Eve softwarel 2014-06-01-12-52-02 2014-06-21-05-56-23 0.82882 084156 @@ @ L

Frank software10 2014-06-23-13-31-42 2014-06-23-13-2421 082522 081819 @O Q@ L

Mallory softwarel 2014-06-20-23-28-21 2014-06-17-09-28-40 087171 091539 @® Q@ 4L

Oscar softwarel 2014-06-19-00-54-42 2014-06-18-23-50-04 092757 0.88916 @@ Q@ L

Peggy softwared 2014-06-22-03-36-34 2014-06-22-03-33-32 090032 0.80267T @@ Q@41

Sybil software? 2014-06-22.02-56-09 2014-06-22-02-49.41 080770 079931 ®O@L

Sybil softwared 2014-06-22-16-55-56 2014-06-22-1648.05 089179 080590 @O @ L

Trent softwareS 2014-06-15-16-24-05 2014-06-15-1553-28 086606 091984 ®O@ L
(b) Overview of a task’s published evaluation results.

il Evaluations on test-corpus

User Precision Recall Runtime

Alice 0.90081 067283 00:04:17

Carol 0.85744 0.29661 00:00:56

Dan 0.96007 0.84511 00:19:32

Eve 0.82882 0.84158 00:05:18

Frank 0.92522 0.81819 00:02:49

Mallory 0.87171 0.91539 00:05:37

Oscar 0.92757 0.88916 00:57:15

Peggy 0.90032 0.80267 00:00:31

Trent 0.86606 0.91984 00:22:10

Figure 9. TIRA’s web interfaces for a task’s evaluation results.

on the measures computed by a given evaluation software. The colorization of the
table cells for both run IDs corresponds to that of the run reviews mentioned above.
This helps Bob to decide which are successful evaluations. All evaluation runs of
all participants on a given data set are listed, including deleted runs. For example,
there are multiple runs for participant Dan and Sybil. Bob gets to decide which
of their runs are going to be published; there are a number of reasonable decision
rules in this situation: (1) all of them (2) the chronologically first or last successful
run, (3) the run chosen by the respective participant, or (4) the best performing run
according to a given performance measure. While the decision rule that is applied
can be chosen by Bob, it is currently not enforced automatically. In the Actions
column, there are two publishing options, namely publication of evaluation results
to the public evaluation results page (the globe icon), and publication of evaluation
results to the respective participant (the person icon). As can be seen in the exam-

ple, Bob has already globally published evaluations runs for all but one participant.
Two of Dan’s runs are published only to him, and for Sybil’s two runs Bob still
needs to make a decision.

The published runs appear on a public evaluation results page that can be found on
TIRA alongside each shared task. Figure 9b shows the performance values of the eval-
uations that Bob decided to publish for his shared task. While he proceeds to announce
the results to participants as well as to the scientific community, this is not necessarily
the end of the story.

Shared tasks are organized for a reason, and that reason is not to host an individual
run-once competition, but to foster research around a problem of interest. While shared
tasks are sometimes organized repeatedly, at some point, they are discontinued, whereas
later on there are still researchers who want to compare their approach to those of the
task’s participants. Based on TIRA, this will be easily possible long after a shared task is
over, since all the evaluation resources required to run an evaluation are hosted and kept
in running state. Moreover, if new evaluation corpora appear, all previously developed
approaches can be re-evaluated on the new corpora, since they are also kept in running
state inside their virtual machines. This way, TIRA paves the way for ongoing, “asyn-
chronous” evaluations around a shared task while ensuring that everyone is evaluated
using the exact same environment. That is, of course, as long as TIRA prevails.

In what follows, we report on the results of three shared tasks which have been
organized using TIRA, and for which a total of 57 softwares have been submitted this
year. The tasks are plagiarism detection, author identification, and author profiling.

3 Plagiarism Detection

This section summarizes the evaluation of 17 plagiarism detectors that have been sub-
mitted to our corresponding shared tasks. A complete version of our report can be found
in [45], where a more in-depth analysis of the obtained results as well as a survey of de-
tection approaches is given. We evaluate different aspects of plagiarism and text reuse
detectors within the two tasks source retrieval and text alignment. Both have been iden-
tified as integral parts of plagiarism detection [61]. Since we have organized plagiarism
detection-related tasks for six years in a row, we observe a recurrent multi-year life cy-
cle, which can be divided into three phases, namely an innovation phase, a consolidation
phase, and a production phase. In the innovation phase, new evaluation resources are
being developed; in the consolidation phase, based on the feedback and results obtained
from the innovation phase, the new evaluation resources are developed to maturity; and
in the production phase, the task is repeated with little changes to allow participants to
build upon what has been accomplished, and, to make the most of the prior investment
in developing the new evaluation resources. Meanwhile, new ideas are being developed
to introduce further innovation. Both, the source retrieval task and the text alignment
task are now in production. In what follows, we briefly overview related work as well
as the evaluation setup and the results obtained for both tasks.

3.1 Related Work

In recent years, the evaluation of plagiarism and text reuse detectors has been studied
in the context of the PAN evaluation labs that have been organized annually since 2009.
For the purpose of these labs, we developed the first standardized evaluation frame-
work which comprises a series of corpora of (semi-)automatically generated plagiarism
as well as detection performance measures [49].> During the first three labs, a total
of 43 plagiarism detectors have been evaluated using this framework [50,41,42]. The
two recent editions refocused on specific sub-problems of plagiarism detection, namely
source retrieval and text alignment. This also included the development of new corpora
for these problems. Instead of again applying a semiautomatic approach to corpus con-
struction, a large corpus of manually generated plagiarism has been crowdsourced in
order to increase the level of realism [12]. This corpus comprises 297 essays of about
5000 words length, written by professional writers. In this regard the writers were given
a set of topics to choose from along with two more technical rules: (1) to use the Chat-
Noir search engine [46] to research their topic of choice, and (2) to reuse text passages
from retrieved web pages in order to compose their essay. The resulting essays represent
the to-date largest corpus of realistic text reuse cases available, and they have been em-
ployed to evaluate another 33 plagiarism detectors in the past three labs [43,44,45]. Be-
sides the mentioned corpora, there are two other ones that comprise text reuse, namely
the Meter corpus [8] and the Clough09 corpus [9]. The former contains 445 cases of
text reuse among 1716 news articles, whereas the latter contains 57 short cases of man-
ually generated plagiarism. To the best of our knowledge, these corpora have not yet
been used in a large-scale evaluation of text reuse or plagiarism detectors.

3.2 Source Retrieval

In source retrieval, given a suspicious document and a web search engine, the task is
to retrieve all source documents from which text has been reused whilst minimizing
retrieval costs. The cost-effectiveness of plagiarism detectors in this task is important
since using existing search engines is perhaps the only feasible way for researchers as
well as small and medium-sized businesses to implement plagiarism detection against
the web, whereas search companies charge considerable fees for automatic usage. To
study this task, we employ a controlled, static web environment, which consists of a
large web crawl and search engines indexing it. Using this setup, we built a large cor-
pus of manually generated text reuse in the form of essays, which serve as suspicious
documents and which are fed into a plagiarism detector. The detection results returned
are evaluated using tailored performance measures derived from precision and recall
as well as cost-effectiveness statistics. Before discussing the actual performances ob-
tained, we describe each of these resources in some detail.

Evaluation Setup For the evaluation of source retrieval from the web, we consider
the real-world scenario of an author who uses a web search engine to retrieve documents
in order to reuse text from them. A plagiarism detector typically uses a search engine,
too, to find reused sources of a given document. Over the past years, we assembled the

3 The corpora PAN-PC-2009/2010/2011 are available at http://www.webis.de/research/corpora

Table 1. Source retrieval results with respect to retrieval performance and cost-effectiveness.

Team Downloaded Total Workload to No Runtime
(alphabetical Sources Workload 1st Detection Detect.

order) F1 prec rec Queries Dwlds Queries Dwlds

Elizalde 0.34 040 0.39 54.5 33.2 16.4 39 7 04:02:00
Kong 0.12 0.08 048 83.5 207.1 85.7 24.9 6 24:03:31
Prakash 0.39 0.38 0.51 60.0 38.8 8.1 3.8 7 19:47:45
Suchomel 0.11 0.08 0.40 19.5 237.3 3.1 38.6 2 45:42:06
Williams 047 057 048 117.1 14.4 18.8 2.3 4 39:44:11
Zubarev 045 054 045 37.0 18.6 5.4 23 3 40:42:18

necessary building blocks to allow for a meaningful evaluation of source retrieval algo-
rithms. The setup was described in much more detail in last year’s task overview [44].
The main components are two associated search engines for the ClueWeb corpus 2009
(ClueWeb09).* This corpus represents one of the most widely adopted web crawls and
it is regularly used for large-scale web search-related evaluations. It consists of about
one billion web pages, half of which are English ones. Indri’ and ChatNoir [46] are
currently the only publicly available search engines that index the ClueWeb(Q9 corpus.
For developer convenience, we also provide a proxy server which unifies the APIs of
the search engines. At the same time, the proxy server logs all accesses to the search
engines for later analysis.

Evaluation Corpus The evaluation corpus employed for source retrieval is based on
the Webis text reuse corpus 2012 (Webis-TRC-2012) [48,47]. The corpus consists of
297 documents that have been written by 27 writers who worked with our setup: given a
topic, a writer used ChatNoir to search for source material on that topic while preparing
a document of 5700 words length on average, reusing text from the found sources. In
the last years, we sampled 98 documents from the Webis-TRC-2012 as training and
test documents. This year, these documents were provided for training, and another
99 documents were sampled as test documents. The remainder of the corpus will be
used within future instances of this task.

Evaluation Results Table 1 shows the performances of the six plagiarism detec-
tors that implemented source retrieval. Their cost-effectiveness is measured as average
workload per suspicious document, and as average numbers of queries and downloads
until the first true positive detection has been made. These statistics reveal if a source
retrieval algorithm finds sources quickly, thus reducing its usage costs. Moreover, we
measure precision and recall of downloaded documents with regard to the true source
documents and compute F;. For lack of a formula to organize retrieval performance
and cost-effectiveness into an absolute order, the detectors are ordered alphabetically,
whereas the best performance value for each metric is highlighted.

None of the detectors dominates the others in terms of all of the employed measures,
whereas three detectors share the top scores among them. The detector of Williams et
al. [68] achieves the best trade-off between precision and recall in terms of F; as well

* http://lemurproject.org/clueweb09
> http://lemurproject.org/clueweb09/index.php#Services

Table 2. Text alignment performances of the 2014 participants on the 2013 test data.

Team PlagDet Recall Precision Granularity Runtime

Sanchez-Perez 0.87818 0.87904 (.88168 1.00344 00:25:35
Oberreuter 0.86933 0.85779 0.88595 1.00369 00:05:31
Palkovskii 0.86806 0.82637 0.92227 1.00580 01:10:04

Glinos 0.85930 079331 096253 1.01695 00:23:13
Shrestha 0.84404 0.83782 0.85906 1.00701 69:51:15
R.Torrejon 0.82952 0.76903 0.90427 ~ 1.00278 00:00:42
Gross 0.82642 076622 093272 1.02514 00:03:00
Kong 0.82161 0.80746 0.84006 1.00309 00:05:26
Abnar 0.67220 0.61163 077330 1.02245 01:27:00
Alvi 0.65954 055068 0.93375 107111 00:04:57
Gillam 0.28302 0.16840 0.88630 1.00000 00:00:55

as best precision, whereas the detector of Prakash and Saha [51] achieves best recall.
Suchomel and Brandejs [62]’s detector requires least query workload, least queries un-
til first detection, and detects source documents for almost all of the test documents.
The detector of Williams et al. [68], however, performs worst in terms of total querying
workload, since it requires 117 queries on average. Posing a query to a search engine
may entail significant costs, whereas downloading a document is considered much less
costly. By comparison, the detector of Zubarev and Sochenkov [70] achieves a similarly
good trade-off between precision and recall with much less querying costs and compa-
rable downloading costs. This detector also competes in terms of workload until first
true positive detection with less than 6 queries and about 2 downloads on average.

3.3 Text Alignment

In text alignment, given a pair of documents, the task is to identify all contiguous pas-
sages of reused text between them. This task has a long tradition at PAN, yet, every
year new ideas emerge at solving this task. Since this task is in its production phase, we
have made little changes compared to last year in order to allow participants to optimize
against the existing evaluation resources.

Evaluation Corpus As an evaluation corpus we reused both the training and test data
from last year [44]. Reusing existing evaluation resources bears the risk that participants
may overfit their approaches against them, thereby diminishing the generalizability of
their respective approaches. This is why we opted not to tell participants the fact that
we reuse last years training and test data, and, we generated a small supplemental eval-
uation corpus to which participants had no prior access. The supplemental evaluation
corpus has been constructed in the same way as last years test corpus to allow for com-
parability of results. However, only a subset of last year’s strategies to obfuscate the
reused text passages of a plagiarism cases have been employed. Therefore, last years
test data serve as reference for evaluation. Last years corpus consists of 5185 pairs of
documents, which contain reused passages of text of varying lengths and obfuscation,
such as paraphrasing, random text modification, cyclic translation, and summarization.

Moreover, there is verbatim reuse to simulate naive plagiarist behavior. The supple-
mental test corpus contains 4800 pairs of documents with a limited set of obfuscations,
namely verbatim copies and random text modifications.

Evaluation Results Table 2 shows the overall performance of eleven plagiarism de-
tectors that implemented text alignment. The detailed performances of each detector
with regard to different kinds of obfuscation can be found in [45]. Performances are
measured using precision and recall at character level as well as granularity (i.e., how
often the same plagiarism case is detected). Based on these values we compute the
PlagDet score by dividing F; by the granularity’s logarithm. The detectors are ranked
by PlagDet.

The best performing detector is that of Sanchez-Perez et al. [54]; a new contender in
this task, closely followed by the detectors of Oberreuter and Eiselt [36] and Palkovsii
and Belov [37]. The latter have also been evaluated in previous years, whereas the de-
tector of Palkovskii and Belov [37] has significantly improved. Over the years, it can be
observed that the differences in performance between detectors are getting smaller and
smaller, which may indicate that improving the algorithms that solve this task becomes
more difficult.

4 Author Identification

This section summarizes the evaluation of 13 author identifiers that have been submitted
to our corresponding shared task. A complete version of our report can be found in [59],
where a more in-depth analysis of the obtained results as well as a survey of detection
approaches is given. Author identification is the most prevalent field of authorship anal-
ysis in terms of published studies [21,58]. The problem variant “authorship attribution”
can be viewed as a closed-set classification task where all possible candidate authors
(the classes) are known. This is typical for forensic applications, where, based on cer-
tain restrictions such as access to specific material or knowledge of specific facts, the
investigators of a case can provide a set of suspects. A more general definition of the au-
thorship attribution problem leads to an open-set classification task, where the true au-
thor of a disputed text is not necessarily among the set of candidate authors. Compared
to the closed-set attribution scenario, this setting is much more difficult, especially if
the size of the candidate author set is small [24]. Finally, if the set of candidate authors
is singleton, we get the author verification problem, which is a fundamental problem
in authorship attribution since any problem setting can be decomposed into a series of
verification problems [26].

4.1 Related Work

Previous work on author verification has been evaluated using sample texts in one lan-
guage only (Greek [60], Dutch [17,30], English [25,26]) and a specific genre (newspa-
per articles [60], student essays [30], fiction [25], newswire stories [19], poems [19],
blogs [26]). Author verification was also included in previous editions of PAN: the au-
thor identification task at PAN-2011 included three author verification problems [1],

PAN-2013 focused on author verification and provided corpora in English, Greek, and
Spanish [22]. However, the size of the corpora was small and covered only one genre
per language.

A variety of performance measures have been used in previous work on this task
including false acceptance and false rejection rates [60,17], accuracy [25,26], recall,
precision, F; [30], balanced error rate [19], recall-precision graphs [26] macro-average
precision and recall [1], and ROC graphs [22]. Unfortunately, these measures are not
able to explicitly estimate the ability of an approach to leave problems unanswered—a
fact which is crucial in a cost-sensitive task like this.

The author identification task at PAN-2013 successfully introduced software sub-
missions, this way enabling reproducibility of the results and future evaluation on dif-
ferent corpora. A meta-model combining all the submitted methods achieved the best
overall performance, showing the potential of heterogeneous models in this task [22].

4.2 Evaluation Setup

Similar to PAN-2013 [22], PAN-2014 focuses on author verification. Given both a set
of known documents written by the same author and a single questioned document,
the task is to determine whether or not the questioned document was written by the
author of the other documents. Each verification problem has been carefully configured
to ensure that all known and the questioned documents are matched for genre, register,
theme, and the date of writing. The number of known documents has been limited to be
at most five, while a variety of languages and genres is covered. The document lengths
vary from a few hundred to a few thousand words, depending on the genre.

The participants were asked to submit a software that takes the document language
and genre as input parameters. For each verification problem they had to provide a score
from the interval [0,1], corresponding to the probability of a positive answer (i.e., the
known and the questioned documents are by the same author). To label a verification
problem as unanswered, a probability score of 0.5 could be assigned.

4.3 Evaluation Corpus

The PAN-2014 corpus comprises author verification problems in the four languages
Dutch, English, Greek, and Spanish. For Dutch and English there are two genres in
separate parts of the corpus. Beyond language and genre there is a variety of known
texts per problem and text length. The training and evaluation sets are balanced in the
number of positive and negative examples. The corpus size is significantly larger than
the corresponding corpus of PAN-2013.

The Dutch corpus part is a transformed version of the CLiPS Stylometry Investi-
gation (CSI) corpus [64]. This recently released corpus contains documents of the two
genres essay and review. All documents are written by language students, native Dutch
speakers, at the University of Antwerp between 2012 and 2014.

The English essays are derived from a corpus of English-as-second-language stu-
dents, the Uppsala Student English (USE) corpus [3], which was originally intended to
become a tool for research on foreign language learning. It consists of university-level

full-time students’ essays. Taking advantage of the USE corpus meta-information, we
defined two main constraints: (1) each document in the collection, known or questioned,
must contain at least 500 words, and, (2) the number of known documents in a case must
range between one and five. We took also advantage of meta information to define case-
generation rules that deal with matching terms and student age. The outlined measures
allowed us for creating cases where the authors share a similar background. Finally, a
source USE document could be considered at most twice: once in a positive case and
once in a negative case.

The set of English novels are our attempt to provide a narrower focus in terms of
both content and writing style than existing collections. Instead of simply focusing on
a single genre or time period, the texts focus on a very small subgenre of speculative
and horror fiction, known as the “Cthulhu Mythos.” It is based on the writings of the
American H. P. Lovecraft (“Lovecraftian horror”), a shared universe with a theme of
human ineffectiveness when facing powerful “cosmic horrors.” It is characterized by
extremely florid prose and an unusual vocabulary. Perhaps most significantly, many of
the elements of this genre are unusual terms, thus creating a shared element that is
unusual in normal English prose. Similarly, the overall theme and tone of these stories
is strongly negative. The documents cover an extended length of time, from Lovecraft’s
original work to modern fan-fiction. The documents were collected from a variety of
on-line sources including the Project Gutenberg® and FanFiction.”

The Greek part of the corpus comprises newspaper opinion articles published in the
Greek weekly newspaper TO BHMA between 1996 and 2012.8 The length of each arti-
cle is at least 1,000 words, while the number of known texts per problem varies between
one and five. For each verification problem, we ensured strong thematic similarity, in-
dicated by the occurrence of certain keywords. In contrast to PAN-2013, there was no
stylistic analysis of the texts to identify authors with similar styles or texts of the same
author. The Spanish part of the corpus refers to the same genre and is built from opin-
ion articles of the Spanish newspaper El-Pais.” Again, the formed author verification
problems ensure thematic similarities between the articles.

4.4 Performance Measures

The probability scores provided by the participants are used to built ROC curves,
whereas the area under curve, AUC, is used as a scalar evaluation measure [10]. In ad-
dition, the performance measures for this task are able to account for unanswered prob-
lems: if there is much uncertainty about a decision, it is possible to leave the problem
unanswered. We adopted the c@ 1 measure, originally proposed for question answering
tasks, which extends the accuracy based on the number of unanswered problems [38].
The measure rewards participants who maintain a large number of correct answers of
high confidence. To rank the participants, a final score is defined as the product of AUC
and c@1. In addition, the efficiency of the submitted methods is measured in terms of
the elapsed runtime.

® http://www.gutenberg.org
7 http://www.fanfiction.net
8 http://www.tovima.gr

? http://www.elpais.com

Table 3. Author identification results in terms of final score (AUC*c@1) and runtime.

Team Overall Essays Articles Novels Reviews Runtime

en nl es ar en nl (hh:mm:ss)
Khonji 0490 0349 0.770 0.698 0.720 0.458 0.479 20:59:40
Frery 0484 0.513 0.821 0.581 0436 0.360 0.347 00:06:42
Castillo 0.461 0318 0.741 0.558 0.501 0.386 0.247 03:59:04
Moreau 0451 0372 0.755 0.634 0.565 0.313 0.375 01:07:34
Mayor 0450 0318 0.823 0.539 0.621 0407 0.299 05:26:17
Zamani 0426 0322 0.525 0468 0470 0476 0.362 02:37:25
Satyam 0400 0459 0489 0.248 0.356 0.380 0.525 02:52:37
Modaresi 0375 0350 0.378 0416 0.294 0.508 0.247 00:00:38
Jankowska 0367 0284 0.732 0.586 0497 0.225 0.357 07:38:18
Halvani 0.335 0338 0.399 0423 0367 0.293 0.316 00:00:54
Vartapetiance 0.308 0270 0.517 0436 0.281 0.245 0.260 01:07:39
Layton 0.306 0363 0.307 0.299 0403 0.260 0.261 27:00:01
Harvey 0304 0312 0396 0.514 0.000 0.283 0.170 01:06:19

4.5 Evaluation Results

We received 13 submissions of research teams from Australia, Canada (2), France, Ger-
many (2), India, Iran, Ireland, Mexico (2), United Arab Emirates, and United Kingdom.
The participants submitted and evaluated their author verification software within the
TIRA framework [13]. A separate run for each corpus part (combination of language
and genre) was performed.

As a challenging baseline for the submitted approaches a language-independent au-
thor verification method from PAN-2013 [20] was employed: the winner of the compe-
tition in terms of AUC; note that the respective approach has not been trained on the
PAN-2014 corpus. Moreover, following the practice of PAN-2013 [22], we examined
the performance of a meta-model that averages the answers of all submitted systems.

The evaluation results in terms of the final score (AUC - c@1), the baseline method,
and the meta-classifier are shown in Table 3. The overall (micro-averaged) perfor-
mances along with the total runtime are also given. In terms of the average performance
of all submitted approaches, the Dutch essays are the easiest problems, while the Dutch
reviews are the hardest. The latter can be partially explained by the fact that only one
known document per problem is used and the review texts are very short. Note that
there is a different winner for each corpus part, with the exception of the overall winner
approach by Khonji and Iraqi, who won on both the Greek and Spanish corpus subsets.
In general, the majority of the submitted methods outperformed the baseline, while the
performance of the meta-classifier is significantly better than any individual method.

Similar to PAN-2013, the overall winner was a modification of the Impostors
method [26]. The performance of this approach was notably stable on all six corpus
subsets. This demonstrates the potential of extrinsic verification methods, which trans-
form author verification from a one-class classification task towards a binary classifica-
tion task, using additional texts from other authors as negative examples. In addition,
the significantly larger training set allowed participants to explore, for the first time,

the use of eager learning methods. Such an approach, followed by the second overall
winner, can be effective as well as efficient.

5 Author Profiling

This section summarizes the evaluation of 10 author profilers that have been submitted
to our corresponding shared task. A complete version of our report can be found in [52],
where a more in-depth analysis of the obtained results as well as a survey of detection
approaches is given. Author profiling tries to determine an author’s gender, age, native
language, personality type, etc. solely by analyzing an author’s texts.

5.1 Related Work

The study of how certain linguistic features vary according to the profile of their au-
thors is a subject of interest for several different areas such as psychology, linguistics
and, more recently, computational linguistics. Pennebaker et al. [40] connected lan-
guage use with personality traits, studying how the variation of linguistic characteristics
in a text can provide information regarding gender and age of its author. Argamon et
al. [2] analyzed formal written texts extracted from the British National Corpus, com-
bining function words with part-of-speech features, and achieved approximately 80%
accuracy in gender prediction. Other research investigated how to obtain age and gen-
der information from formal texts [18,5]. With the rise of the social media, Koppel e?
al. [23] built a dataset of blog posts and studied the problem of automatically determin-
ing an author’s gender based on proposing combinations of simple lexical and syntactic
features, also achieving approximately 80% accuracy. Schler et al. [55] collected more
than 71 000 blog posts and used a set of stylistic features such as non-dictionary words,
parts-of-speech, function words and hyperlinks, combined with content features, such
as word unigrams with the highest information gain. They also obtained an accuracy of
about 80% for gender identification, and about 75% for age identification. Goswami et
al. [16] added some new features to Schler’s work, such as slang words and the average
length of sentences, improving accuracy to 80.3% in age group detection and to 89.2%
in gender detection. Peersman et al. [39] compiled a dataset for the purpose of gender
and age prediction from Netlog.!” Studying short texts, Zhang and Zhang [69] experi-
mented with segments of blog posts and obtained 72.1% accuracy for gender prediction.
Similarly, Nguyen et al. [34] studied the use of language and age among Dutch Twitter
users. They modeled age as a continuous variable (as they had previously done in [35]),
and used a prediction approach based on logistic regression. They also measured the
effect of gender in the performance of age detection, considering both variables as in-
terdependent, and achieved correlations of up to 0.74 and mean absolute errors between
4.1 and 6.8 years. Our lab was the first to offer author profiling as a shared task. At
PAN 2013 [53] we aimed at identifying age and gender from a large corpus collected
from social media. Most of the participants used combinations of style-based features
such as frequency of punctuation marks, capital letters, quotations, and so on, together

1% http://www.netlog.com

Table 4. Joint identification results in terms of accuracy for Author Profiling.

Team Overall Social Media Blogs Twitter Reviews
en es en es en es en
Lopez-Monroy ~ 0.2895 0.1902 0.2809 0.3077 0.3214 0.3571 0.3444 0.2247
Liau 0.2802 0.1952 0.3357 0.2692 0.2321 0.3506 0.3222 0.2564
Shrestha 0.2760 0.2062 0.2845 0.2308 0.2500 0.3052 0.4333 0.2223
Weren 0.2349 0.1914 0.2792 0.2949 0.1786 0.2013 0.2778 0.2211
Villena-Roman 0.2315 0.1905 0.1961 0.3077 0.2321 0.2078 0.2667 0.2199
Marquardt 0.1998 0.1428 0.2102 0.1282 0.2679 0.1948 03111 0.1437
Baker 0.1677 0.1277 0.1678 0.1282 0.2321 0.1688 0.2111 0.1382
Mechti 0.1067 0.1244 0.1060 0.0897 0.1786 0.0584 0.1444 0.0451
Castillo Juarez ~ 0.0946 0.1445 0.1254 0.1795 0.0893 - - 0.1236
Ashok 0.0834 0.1318 - 0.1282 - 0.1948 - 0.1291

with POS tags and content-based features such as Latent Semantic Analysis, bag-of-
words, tf -idf , dictionary-based words, topic-based words, and so on. Notably, the win-
ner of the PAN 2013 task [29] used second order representations based on relationships
between documents and profiles, whereas another well-performing approach is the use
of collocations of the winner of the English task [33].

5.2 Evaluation Corpora

In the Author Profiling task at PAN 2013 [53] participants approached the task of iden-
tifying age and gender in a large corpus collected from social media. At PAN 2014,
we continue to study the gender and age aspects of the author profiling problem, how-
ever, four data sets of different genres were considered—social media, blogs, Twitter,
and hotel reviews—both in English and Spanish. We annotated age with the following
classes: 18-24; 25-34; 35-49; 50-64; and 65+.

The social media data set was built by sampling parts of the PAN 2013 evaluation
corpus. We selected only authors with an average number of words greater than 100 in
their posts. We also reviewed manually the data in order to remove authors who appear
to be fake profiles such as bots. The blogs and Twitter data sets were manually collected
and annotated by three annotators. The Twitter data set was built in collaboration with
RepLab,!! where the main goal of author profiling in the context of reputation manage-
ment on Twitter is to decide how influential a given user is in a domain of interest. For
each blog, we provided up to 25 posts and for each twitter profile, we provided up to
1000 tweets. The hotel review data set is derived from another corpus that was originally
used for aspect-level rating prediction [66].!> The original corpus was crawled from the
hotel review site TripAdvisor'® and manually checked for quality and compliance with
the format requirements of PAN 2014.

" http://nlp.uned.es/replab2014
12 http://times.cs.uiuc.edu/~wang296/data
13 http://www.tripadvisor.com

5.3 Evaluation Results

In Table 4 joint identification accuracies for both gender and age prediction are shown
per data set and averaged over all data sets, which also serves as ranking criterion. The
approach of Lopez-Monroy et al. [28] performs best overall. Moreover, it can be seen
that (1) the highest joint accuracies were achieved on Twitter data, and, (2) the smallest
joint accuracies were achieved in English social media and hotel reviews. It is an open
question why these differences can be observed, whereas possible explanations may be
that people express themselves more spontaneously on Twitter compared to the other
genres, whereas the low scores are due to the approaches’ difficulty of predicting gender
in social media and age in hotel reviews.

In summary, simple content features, such as bag-of-words or word n-grams achieve
best accuracies. Bag-of-words features are used by Liau and Vrizlynn [27], word n-
grams are used by Maharjan et al. [31], and term vector models are used by Villena-
Romadn and Gonzalez-Cristébal [65]. They achieved competitive performances on al-
most all data sets. Notably, Weren et al. [67] employ information retrieval features and
Marquardt et al. [32] mix content and style features.

6 Conclusion and Outlook

In conclusion, the creation of the TIRA evaluation platform has fundamentally changed
the way we organize shared tasks at PAN. While our initial goal was to improve the
reproducibility of our shared tasks, the technology that was developed as a result of
this endeavor is applicable for more than just software submissions. For example, an
initial analysis of the access logs that we recorded allows for a heretofore unknown,
exciting insight into the research in progress of participants of a shared tasks. Specific
usage patterns can be discerned in real-time which allow organizers of a shared task to
engage with participants who exert usage patterns related to software execution errors.
Moreover, the overall participation in a shared task can be monitored as it happens,
whereas today, most organizers will only learn if their task was successful right after the
run submission deadline, when it becomes clear how many of the registered participants
actually submit a run.

Besides the exciting opportunities that arise from TIRA, all of these benefits are
now readily available to PAN’s three tasks plagiarism detection, author identification,
and author profiling. For these tasks, we have already assembled an archive of more
than 100 virtual machines on which the state of the art approaches are deployed in a
manner that makes them immediately executable. It is still unforeseeable how this will
impact future research in these tasks.

Acknowledgements

We thank the organizing committees of PAN’s shared tasks Walter Daelemans, Patrick
Juola, Miguel Angel Sédnchez Pérez, Ben Verhoeven, Alberto Barrén-Cedefio, and
Irina Chugur. Moreover, we thank our student assistants Anna Beyer and Matthias
Busse for helping with maintaining TIRA. Our special thanks go to all of PAN’s par-
ticipants. This work was partially supported by the WIQ-EI IRSES project (Grant
No. 269180) within the FP7 Marie Curie action.

References

10.

11.

12.

13.

14.

. Argamon, S., Juola, P.: Overview of the International Authorship Identification Competition

at PAN-2011. In: Petras, V., Forner, P., Clough, P. (eds.) Working Notes Papers of the CLEF
2011 Evaluation Labs (Sep 2011), http://www.clef-initiative.eu/publication/working-notes

. Argamon, S., Koppel, M., Fine, J., Shimoni, A.R.: Gender, Genre, and Writing Style in

Formal Written Texts. TEXT 23, 321-346 (2003)

. Axelsson, M.: USE-The Uppsala Student English Corpus: An Instrument for Needs

Analysis. ICAME Journal 24, 155-157 (2000), http://nora.hd.uib.no/icame/ij24/

. Belz, A.: Shared-task Evaluations in HLT: Lessons for NLG. In: Proceedings of INLG-2006

(2006)

. Burger, J.D., Henderson, J., Kim, G., Zarrella, G.: Discriminating Gender On Twitter. In:

Proceedings of the Conference on Empirical Methods in Natural Language Processing. pp.
1301-1309. EMNLP ’11, Association for Computational Linguistics, Stroudsburg, PA,
USA (2011)

. Cappellato, L., Ferro, N., Halvey, M., Kraaij, W. (eds.): CLEF 2014 Evaluation Labs and

Workshop — Working Notes Papers, 15-18 September, Sheffield, UK. CEUR Workshop
Proceedings, CEUR-WS.org (2014),
http://www.clef-initiative.eu/publication/working-notes

. Chapman, W.W., Nadkarni, P.M., Hirschman, L., D’ Avolio, L.W., Savova, G.K., Uzuner,

0.: Overcoming Barriers To NLP For Clinical Text: The Role Of Shared Tasks And The
Need For Additional Creative Solutions. Journal of the American Medical Informatics
Association : JAMIA 18(5), 540-543 (Sep 2011),
http://dx.doi.org/10.1136/amiajnl-2011-000465

. Clough, P, Gaizauskas, R., Piao, S., Wilks, Y.: METER: MEasuring TExt Reuse. In:

Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. pp.
152-159. ACL ’02, Association for Computational Linguistics, Stroudsburg, PA, USA
(2002)

. Clough, P., Stevenson, M.: Developing a Corpus of Plagiarised Short Answers. Lang.

Resour. Eval. 45, 5-24 (March 2011)

Fawcett, T.: An Introduction to ROC Analysis. Pattern Recognition Letters 27(8), 861-874
(2006)

Forner, P., Navigli, R., Tufis, D. (eds.): CLEF 2013 Evaluation Labs and Workshop —
Working Notes Papers, 23-26 September, Valencia, Spain (2013),
http://www.clef-initiative.eu/publication/working-notes

Gollub, T., Hagen, M., Michel, M., Stein, B.: From Keywords to Keyqueries: Content
Descriptors for the Web. In: Gurrin, C., Jones, G., Kelly, D., Kruschwitz, U., de Rijke, M.,
Sakai, T., Sheridan, P. (eds.) 36th International ACM Conference on Research and
Development in Information Retrieval (SIGIR 13). pp. 981-984. ACM (Jul 2013),
http://dl.acm.org/citation.cfm?id=2484181

Gollub, T., Potthast, M., Beyer, A., Busse, M., Rangel, F., Rosso, P., Stamatatos, E., Stein,
B.: Recent Trends in Digital Text Forensics and its Evaluation. In: Forner, P., Miiller, H.,
Paredes, R., Rosso, P., Stein, B. (eds.) Information Access Evaluation meets Multilinguality,
Multimodality, and Visualization. 4th International Conference of the CLEF Initiative
(CLEF 13). pp. 282-302. Springer, Berlin Heidelberg New York (Sep 2013)

Gollub, T., Stein, B., Burrows, S.: Ousting Ivory Tower Research: Towards a Web
Framework for Providing Experiments as a Service. In: Hersh, B., Callan, J., Maarek, Y.,
Sanderson, M. (eds.) 35th International ACM Conference on Research and Development in
Information Retrieval (SIGIR 12). pp. 1125-1126. ACM (Aug 2012)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Gollub, T., Stein, B., Burrows, S., Hoppe, D.: TIRA: Configuring, Executing, and
Disseminating Information Retrieval Experiments. In: Tjoa, A.M., Liddle, S., Schewe,
K.D., Zhou, X. (eds.) 9th International Workshop on Text-based Information Retrieval (TIR
12) at DEXA. pp. 151-155. IEEE, Los Alamitos, California (Sep 2012)

Goswami, S., Sarkar, S., Rustagi, M.: Stylometric Analysis of Bloggers’ Age and Gender.
In: Adar, E., Hurst, M., Finin, T., Glance, N.S., Nicolov, N., Tseng, B.L. (eds.) ICWSM.
The AAAI Press (2009)

van Halteren, H.: Linguistic Profiling for Author Recognition and Verification. In:
Proceedings of the 42Nd Annual Meeting on Association for Computational Linguistics.
ACL ’04, Association for Computational Linguistics, Stroudsburg, PA, USA (2004),
http://dx.doi.org/10.3115/1218955.1218981

Holmes, J., Meyerhoff, M.: The Handbook of Language and Gender. Blackwell Handbooks
in Linguistics, Wiley (2003)

Jair-Escalante, H., Montes-y Gémez, M., Villasenor-Pineda, L.: Particle Swarm Model
Selection For Authorship Verification. In: Proceedingsof the 14th Iberoamerican
Conference on Pattern Recognition. pp. 563-570 (2009)

Jankowska, M., Keselj, V., Milios, E.: CNG Text Classification for Authorship Profiling
Task—Notebook for PAN at CLEF 2013. In: Forner et al. [11]

Juola, P.: Authorship Attribution. Foundations and Trends in Information Retrieval 1,
234-334 (2008)

Juola, P., Stamatatos, E.: Overview of the Author Identification Task at PAN-2013. In: P,
T.D.E.F. (ed.) Notebook Papers of CLEF 2013 LABs and Workshops (CLEF-2013) (2013)
Koppel, M., Argamon, S., Shimoni, A.R.: Automatically Categorizing Written Texts by
Author Gender (2003)

Koppel, M., Schler, J., Argamon, S.: Authorship Attribution in the Wild. Language
Resources and Evaluation 45, 83-94 (2011)

Koppel, M., Schler, J., Bonchek-Dokow, E.: Measuring Differentiability: Unmasking
Pseudonymous Authors. J. Mach. Learn. Res. 8, 1261-1276 (Dec 2007),
http://dl.acm.org/citation.cfm?id=1314498.1314541

Koppel, M., Winter, Y.: Determining if Two Documents are Written by the Same Author.
Journal of the American Society for Information Science and Technology 65(1), 178-187
(2014)

Liau, Y., Vrizlynn, L.: Submission to the Author Profiling Competition at PAN-2014.
http://www.webis.de/research/events/pan-14 (2014), From the Institute for Infocomm
Research, Singapore

Lépez-Monroy, A.P., Montes-y Gémez, M., Jair-Escalante, H., Villasenor-Pineda, L.: Using
Intra-Profile Information for Author Profiling—Notebook for PAN at CLEF 2014. In:
Cappellato et al. [6]

Lépez-Monroy, A.P., Montes-y-Gémez, M., Jair-Escalante, H., Villasenor-Pineda, L.,
Villatoro-Tello, E.: INAOE’s Participation at PAN’13: Author Profiling task—Notebook for
PAN at CLEF 2013. In: Forner et al. [11]

Luyckx, K., Daelemans, W.: Authorship Attribution and Verification with many Authors
and Limited Data. In: Proceedings of the Twenty-Second International Conference on
Computational Linguistics (COLING 2008). pp. 513-520. Coling 2008 Organizing
Committee, Manchester, UK (2008)

Maharjan, S., Shrestha, P., Solorio, T.: A Simple Approach to Author Profiling in
MapReduce—Notebook for PAN at CLEF 2014. In: Cappellato et al. [6]

Marquardt, J., Fanardi, G., Vasudevan, G., Moens, M.E., Davalos, S., Teredesai, A., Cock,
M.D.: Age and Gender Identification in Social Media—Notebook for PAN at CLEF 2014.
In: Cappellato et al. [6]

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Meina, M., Brodzinska, K., Celmer, B., Czokow, M., Patera, M., Pezacki, J., Wilk, M.:
Ensemble-based Classification for Author Profiling Using Various Features—Notebook for
PAN at CLEF 2013. In: Forner et al. [11]

Nguyen, D., Gravel, R., Trieschnigg, D., Meder, T.: "How old do you think I am?"; A study
of Language and Age in Twitter. Proceedings of the Seventh International AAAI
Conference on Weblogs and Social Media (2013)

Nguyen, D., Smith, N.A., Rosé, C.P.: Author Age Prediction from Text Using Linear
Regression. In: Proceedings of the 5Sth ACL-HLT Workshop on Language Technology for
Cultural Heritage, Social Sciences, and Humanities. pp. 115-123. LaTeCH ’11, Association
for Computational Linguistics, Stroudsburg, PA, USA (2011)

Oberreuter, G., Eiselt, A.: Submission to the 6th International Competition on Plagiarism
Detection. http://www.webis.de/research/events/pan-14 (2014), From Innovand.io, Chile
Palkovskii, Y., Belov, A.: Developing High-Resolution Universal Multi-Type N-Gram
Plagiarism Detector—Notebook for PAN at CLEF 2014. In: Cappellato et al. [6]

Pefias, A., Rodrigo, A.: A Simple Measure to Assess Non-Response. In: Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies - Volume 1. pp. 1415-1424. HLT °11, Association for Computational
Linguistics, Stroudsburg, PA, USA (2011),
http://dl.acm.org/citation.cfm?id=2002472.2002646

Peersman, C., Daelemans, W., Vaerenbergh, L.V.: Predicting Age and Gender in Online
Social Networks. In: Proceedings of the 3rd international workshop on Search and mining
user-generated contents. pp. 37-44. SMUC *11, ACM, New York, NY, USA (2011)
Pennebaker, J.W., Mehl, M.R., Niederhoffer, K.G.: Psychological Aspects of Natural
Language Use: Our Words, Our Selves. Annual review of psychology 54(1), 547-577
(2003)

Potthast, M., Barr6n-Cedeiio, A., Eiselt, A., Stein, B., Rosso, P.: Overview of the 2nd
International Competition on Plagiarism Detection. In: Braschler, M., Harman, D., Pianta,
E. (eds.) Working Notes Papers of the CLEF 2010 Evaluation Labs (Sep 2010),
http://www.clef-initiative.eu/publication/working-notes

Potthast, M., Eiselt, A., Barrén-Cedefio, A., Stein, B., Rosso, P.: Overview of the 3rd
International Competition on Plagiarism Detection. In: Petras, V., Forner, P., Clough, P.
(eds.) Working Notes Papers of the CLEF 2011 Evaluation Labs (Sep 2011),
http://www.clef-initiative.eu/publication/working-notes

Potthast, M., Gollub, T., Hagen, M., Graegger, J., Kiesel, J., Michel, M., Oberlidnder, A.,
Tippmann, M., Barrén-Cedefio, A., Gupta, P., Rosso, P., Stein, B.: Overview of the 4th
International Competition on Plagiarism Detection. In: Forner, P., Karlgren, J.,
Womser-Hacker, C. (eds.) Working Notes Papers of the CLEF 2012 Evaluation Labs (Sep
2012), http://www.clef-initiative.eu/publication/working-notes

Potthast, M., Gollub, T., Hagen, M., Tippmann, M., Kiesel, J., Rosso, P., Stamatatos, E.,
Stein, B.: Overview of the 5th International Competition on Plagiarism Detection. In:
Forner, P., Navigli, R., Tufis, D. (eds.) Working Notes Papers of the CLEF 2013 Evaluation
Labs (Sep 2013), http://www.clef-initiative.eu/publication/working-notes

Potthast, M., Hagen, M., Beyer, A., Busse, M., Tippmann, M., Rosso, P., Stein, B.:
Overview of the 6th International Competition on Plagiarism Detection. In: Cappellato, L.,
Ferro, N., Halvey, M., Kraaij, W. (eds.) CLEF 2014 Evaluation Labs and Workshop —
Working Notes Papers. CEUR Workshop Proceedings, CLEF and CEUR-WS.org (Sep
2014), http://www.clef-initiative.eu/publication/working-notes

Potthast, M., Hagen, M., Stein, B., Graegger, J., Michel, M., Tippmann, M., Welsch, C.:
ChatNoir: A Search Engine for the ClueWeb09 Corpus. In: Hersh, B., Callan, J., Maarek,
Y., Sanderson, M. (eds.) 35th International ACM Conference on Research and Development
in Information Retrieval (SIGIR 12). p. 1004. ACM (Aug 2012)

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Potthast, M., Hagen, M., Volske, M., Stein, B.: Crowdsourcing Interaction Logs to
Understand Text Reuse from the Web. In: Fung, P., Poesio, M. (eds.) Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics (ACL 13). pp.
1212-1221. ACL (Aug 2013), http://www.aclweb.org/anthology/P13-1119

Potthast, M., Hagen, M., Volske, M., Stein, B.: Exploratory Search Missions for TREC
Topics. In: Wilson, M.L., Russell-Rose, T., Larsen, B., Hansen, P., Norling, K. (eds.) 3rd
European Workshop on Human-Computer Interaction and Information Retrieval
(EuroHCIR 2013). pp. 11-14. CEUR-WS.org (Aug 2013),

http://www.cs.nott.ac.uk/ mlw/euroHCIR2013/proceedings/paper3.pdf

Potthast, M., Stein, B., Barrén-Cedefio, A., Rosso, P.: An Evaluation Framework for
Plagiarism Detection. In: Huang, C.R., Jurafsky, D. (eds.) 23rd International Conference on
Computational Linguistics (COLING 10). pp. 997-1005. Association for Computational
Linguistics, Stroudsburg, Pennsylvania (Aug 2010)

Potthast, M., Stein, B., Eiselt, A., Barron-Cedeiio, A., Rosso, P.: Overview of the 1st
International Competition on Plagiarism Detection. In: Stein, B., Rosso, P., Stamatatos, E.,
Koppel, M., Agirre, E. (eds.) SEPLN 09 Workshop on Uncovering Plagiarism, Authorship,
and Social Software Misuse (PAN 09). pp. 1-9. CEUR-WS.org (Sep 2009),
http://ceur-ws.org/Vol-502

Prakash, A., Saha, S.: Experiments on Document Chunking and Query Formation for
Plagiarism Source Retrieval—Notebook for PAN at CLEF 2014. In: Cappellato et al. [6]
Rangel, F.,, Rosso, P., Chugur, L., Potthast, M., Trenkmann, M., Stein, B., Verhoeven, B.,
Daelemans, W.: Overview of the Author Profiling Task at PAN 2014. In: Cappellato, L.,
Ferro, N., Halvey, M., Kraaij, W. (eds.) CLEF 2014 Evaluation Labs and Workshop —
Working Notes Papers. CEUR Workshop Proceedings, CLEF and CEUR-WS.org (Sep
2014), http://www.clef-initiative.eu/publication/working-notes

Rangel, F.,, Rosso, P., Koppel, M., Stamatatos, E., Inches, G.: Overview of the Author
Profiling Task at PAN 2013—Notebook for PAN at CLEF 2013. In: Forner et al. [11]
Sanchez-Perez, M., Sidorov, G., Gelbukh, A.: A Winning Approach to Text Alignment for
Text Reuse Detection at PAN 2014—Notebook for PAN at CLEF 2014. In: Cappellato et al.
(6]

Schler, J., Koppel, M., Argamon, S., Pennebaker, J.W.: Effects of Age and Gender on
Blogging. In: AAAI Spring Symposium: Computational Approaches to Analyzing
Weblogs. pp. 199-205. AAAI (2006)

Scott, D., Moore, J.: An NLG Evaluation Competition? Eight reasons to be Cautious. In:
Proceedings of the Workshop on Shared Tasks and Comparative Evaluation in Natural
Language Generation. pp. 22-23 (2007)

Smeaton, A.F., Over, P., Kraaij, W.: Evaluation Campaigns and TRECvid. In: Proceedings
of the 8th ACM International Workshop on Multimedia Information Retrieval. pp. 321-330.
MIR ’06, ACM, New York, NY, USA (2006), http://doi.acm.org/10.1145/1178677.1178722
Stamatatos, E.: A Survey of Modern Authorship Attribution Methods. Journal of the
American Society for Information Science and Technology 60, 538-556 (2009)
Stamatatos, E., Daelemans, W., Verhoeven, B., Potthast, M., Stein, B., Juola, P.,
Sanchez-Perez, M., Barrén-Cedeiio, A.: Overview of the Author Identification Task at PAN
2014. In: Cappellato, L., Ferro, N., Halvey, M., Kraaij, W. (eds.) CLEF 2014 Evaluation
Labs and Workshop — Working Notes Papers. CEUR Workshop Proceedings, CLEF and
CEUR-WS.org (Sep 2014 (to appear)),
http://www.clef-initiative.eu/publication/working-notes

Stamatatos, E., Fakotakis, N., Kokkinakis, G.: Automatic Text Categorization in Terms of
Genre and Author. Comput. Linguist. 26(4), 471-495 (Dec 2000),
http://dx.doi.org/10.1162/089120100750105920

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Stein, B., Meyer zu Eiflen, S., Potthast, M.: Strategies for Retrieving Plagiarized
Documents. In: Clarke, C., Fuhr, N., Kando, N., Kraaij, W., de Vries, A. (eds.) 30th
International ACM Conference on Research and Development in Information Retrieval
(SIGIR 07). pp. 825-826. ACM, New York (Jul 2007)

Suchomel, Simon., Brandejs, M.: Heterogeneous Queries for Synoptic and Phrasal
Search—Notebook for PAN at CLEF 2014. In: Cappellato et al. [6]

Tsikrika, T., de Herrera, A.G.S., Miiller, H.: Assessing the Scholarly Impact of ImageCLEF.
In: Proceedings of the Second International Conference on Multilingual and Multimodal
Information Access Evaluation. pp. 95-106. CLEF’11, Springer-Verlag, Berlin, Heidelberg
(2011), http://dl.acm.org/citation.cfm?id=2045274.2045290

Verhoeven, B., Daelemans, W.: Clips Stylometry Investigation (CSI) Corpus: A Dutch
Corpus for the Detection of Age, Gender, Personality, Sentiment and Deception in Text. In:
Proceedings of the 9th International Conference on Language Resources and Evaluation
(LREC 2014). Reykjavik, Iceland (2014)

Villena-Romdn, J., Gonzdlez-Cristdbal, J.C.: DAEDALUS at PAN 2014: Guessing Tweet
Author’s Gender and Age—Notebook for PAN at CLEF 2014. In: Cappellato et al. [6]
Wang, H., Lu, Y., Zhai, C.: Latent Aspect Rating Analysis on Review Text Data: A Rating
Regression Approach. In: Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. pp. 783-792 (2010)

Weren, E.R., Moreira, V.P,, de Oliveira, J.P.: Exploring Information Retrieval Features for
Author Profiling—Notebook for PAN at CLEF 2014. In: Cappellato et al. [6]

Williams, K., Chen, H.H., Giles, C.: Supervised Ranking for Plagiarism Source
Retrieval—Notebook for PAN at CLEF 2014. In: Cappellato et al. [6]

Zhang, C., Zhang, P.: Predicting Gender from Blog Posts. Technical Report. University of
Massachusetts Amherst, USA (2010)

Zubarev, D., Sochenkov, I.: Using Sentence Similarity Measure for Plagiarism Source
Retrieval—Notebook for PAN at CLEF 2014. In: Cappellato et al. [6]

