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ABSTRACT
This paper describes the participation of the Language and
Reasoning group from UAM-C in the context of the SOurce
COde re-use competition (SOCO 2014). We propose dif-
ferent representations of a source code, which attempt to
highlight different aspects of a code; particularly: i) lexical,
ii) structural, and iii) stylistics. From the lexical view, we
used a character 3-gram model without considering all re-
served words for the programming language in revision. For
the structural view, we proposed two similarity metrics that
takes into account the function’s signatures within a source
code, namely the data types and the identifier’s names of the
function’s signature. The third view consists on accounting
for several stylistics’ features, such as the number of white
spaces, lines of code, upper letters, etc. At the end, we
combine these different representations in three ways, each
of which was a run submission for the SOCO competition
this year. Obtained results indicate that proposed repre-
sentations provide some information that allows to detect
particular cases of source code re-use.

Categories and Subject Descriptors
H.3.1 [Information storage and retrieval]: Content Anal-
ysis and Indexing—Linguistic processing ; H.3.4 [Information
storage and retrieval]: Systems and Software

Keywords
Lexical, structural and stylistic attributes, Document repre-
sentation, Plagiarism detection, Source code re-use

1. INTRODUCTION
Identification of source code re-use is an interesting topic

from two points of views. Firstly, the industry that produces
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software is always looking for protecting their developments,
thus they usually search for any sign of unauthorized use of
their own blocks of source code. Secondly, in the academic
field, it is well known that the habit of copying programs
is a common practice among computation students. Such
phenomena is also motivated due to all the facilities that
web forums, blogs, repositories, etc., offer to share source
codes which most of the times have been already debugged
and tested.

Consequently, source code re-use detection has became an
important research topic, motivating different groups to de-
fine the problem more formally in order to build automatic
systems to identify such problem. As an example, in 1987
Faidhi and Robinson [5] proposed a seven level hierarchy
that aimed at representing most of the program’s modifica-
tions used by students when they plagiarize source code. As
a consequence, many approaches that try to identify plagia-
rized code are based on these levels of complexity.

However, it is important to notice that programmers that
re-use a source code usually apply not one, but several ob-
fuscation techniques when re-using sections from a program.
Therefore, even though there are several proposed techniques
to detect different types of source code re-use, it is very diffi-
cult for a single automatic system to detect all these different
types of obfuscation practices.

In this work we propose different representations of a
source code, namely: character n-grams, data types, iden-
tifiers’ names, and stylistics features. Our intuitive idea is
that by means of considering different aspects from a source
code, it will be possible to capture some of the most common
practices performed by programmers when they are re-using
a source code.

2. RELATED WORK
Lately, developed automated systems to identify source

code re-use are applying natural language processing (NLP)
techniques that are been adapted to this specific context.
One example of those systems is one that take into account
a remanence trace left after a copy of source code, such



as, white space patterns [2]. The intuitive idea behind this
approach indicates that a plagiarist camouflages almost ev-
ery thing when copying a source code but the white spaces.
Accordingly, it compute similarities between source codes
taking into account the use of letters ( all represented as X)
and white spaces (represented as S).

As another example of automatic systems that employ
NLP techniques, are those based on word n-grams [1, 8].
These works consider several features of source code, such
as, identifiers, number of lines, number of hapax, etc. Their
obtained results were very promising.

Some other works employed transformations techniques
based on LSA, for example the work presented in [4]. In this
work, authors focused on three components: preprocessing
(keeping or removing comments, keywords or program skele-
ton), weighting (combining diverse local or global weights)
and the dimensionality of LSA.

As can be observed, a common characteristic of previous
works is that they attempt to capture several aspects from
source codes into one single/mixed representation (i.e., a
single view) in order to detect source code re-use. Contrary
to these previous works, our hypothesis states that each as-
pect (i.e., either structural or superficial elements) provides
its own important information and can not be mixed with
other aspects when representing source codes.

3. SHARED TASK DESCRIPTION
SOCO, Detection of SOurce COde Re-use, is a shared task

that focuses on monolingual source code re-use detection.
Participant systems were provided with a set of source codes
in C and Java programming languages. The task consists on
retrieving the source code pairs that have been re-use at a
document level. The details about the tasks are described
in [7].

The data set provided for the shared task is divided into
two sets: training and test. The training set has two col-
lections, for C and Java. The Java collection contains 259
source codes while the C collection contains 79 source code.
Note that the relevance judgments represent cases of re-use
in both directions, i.e., the direction of the re-use is not
being detected.

4. PROPOSED SOURCE CODE REPRESEN-
TATIONS

In this section we describe our proposed representations
for source code in order to detect several aspects that help to
detect source code re-use. We divided these representations
into three views: i.e., lexical, structural and stylistics.

4.1 Lexical view: character 3-grams represen-
tation

The approach used in this representation was proposed by
Flores Sáez [6]. The main idea was to represent source code
by means of a bag of character n-grams, Bj , where all the
white spaces and line-breaks are deleted and the letters are
changed into lowercase. In addition to the original method,
we improve the method by eliminating all the reserved words
into the document.

Thus, given two codes, Cα and Cβ , their bag of character
3-grams is computed as we mentioned before; then, each
code is represented as a vector Cα and Cβ according to the
vector space model proposed by [3]. Finally, the similarity

between a pair of source codes is computed using the cosine
similarity, which is defined as follows:

sim3grams(Cα, Cβ) = cos(θ) =
Cα ·Cβ

‖Cα‖‖Cβ‖
(1)

4.2 Structural view: data types from the func-
tion’s signature representation

The proposed structural view consists of two forms of rep-
resentation. The first representation considers only the data
types of the function’s signatures1. This representation at-
tempts to compare some elements that belong, to some ex-
tent, to the structure of the program by means of using the
data types of function’s signatures.

Accordingly, first we represent each function’s signature
into a list of data types. For example, the following func-
tion’s signature int sum(int numX, int numY) will be trans-
lated into int (int, int). Our proposed representation
also accounts for the frequency of each data type.

To calculate the similarity between two functions, we need
to compare two elements of the function’s signature: return
data type and arguments’ data types. We measure the im-
portance of each element independently and then we merge
them.

Given two functions, mα and mβ from source codes Cα
and Cβ respectively. The similarity of their return data type
(simr) is 1 if they are the same, and 0 otherwise.

The similarity of their arguments data types is a little
more elaborated to compute. We use a bag of data-types
for each function, we also count each repetition of each data-
type. Then we represent each function as a vector. Finally,
we compute a similarity between two functions’ vectors mα

and mβ from source codes Cα and Cβ respectively as defined
in Equation 2.

sima(mα,mβ) =

∑n
i=0 min(mα

i,m
β
i)∑n

i=0 max(mα
i,mβ

i)
(2)

where n indicates the number of different data types in both
source codes,i.e., the vocabulary of data types.

Once we have all the information from the function’s sig-
natures, i.e., the similarities from the return data-type and
the arguments’ data-type; we can compute a single similar-
ity measure. For doing so, we merge the two measures by
means of a linear combination, which represents the similar-
ity between mα and mβ (See Equation 3).

sim1(mα,mβ) = σ∗simr(m
α,mβ)+(1−σ)∗sima(mα,mβ)

(3)
where σ is a scalar that weights the importance of each

term and it satisfies that 0 ≤ σ ≤ 1. For our performed
experiments, we established σ = 0.5 so both parts are con-
sidered equally important.

Finally, in order to calculate this structural similarity value
we perform as follows. Given two codes, Cα and Cβ , we com-
pute a function-similarity matrix Mtype

α,β , where all functions
in Cα are compare against all functions in Cβ . Thus, the
final values of similarity between two codes are defined as in
Equation 4.

1We will refer just as function to every programming func-
tion within a source code.



simDataTypes(Cα, Cβ) = f(Mtype
α,β ) (4)

where f(x) represents either the maximum value contained
in the matrix, or the average value among all values from
the matrix.

4.3 Structural view: names from the function’s
signatures representation

As a complement for the previous representation, this rep-
resentation considers the structure by using the names of the
functions as well as the name of the arguments.

This representation concatenate the name of the func-
tion’s name with the name of the arguments, convert ev-
ery character into lowercase and removes white spaces (if
present). Thus, the function int sum(int numX, int numY)

is represented as the string sumnumxnumy. Then we extracted
all the character 3-grams and form a bag of 3-grams.

Once we have computed the bag of n-grams, we can com-
pute how similar are two functions. Given two functions,
mα and mβ from Cα and Cβ respectively; and their cor-
responding vector representation using the bag of 3-grams
mα and mβ , we compute the similarity using the Jaccard
coefficient as follows:

sim2(mα,mβ) =
mα ∩mβ

mα ∪mβ
(5)

Similarly to the previous approach, every function in source
code Cα is compared to every function in code Cβ . From this
comparison we obtain a name-similarity matrix Mnames

α,β .
Hence, the final similarity values of Cα and Cβ is defined
as established in Equation 6.

simNames(Cα, Cβ) = f(Mnames
α,β ) (6)

where f(x) can be set to the maximum value in the matrix,
or the average value from the matrix.

4.4 Stylistic view
This representation aims at finding unique properties from

the original author such as his/her programming style. In
this sense, we compute 11 stylistic features to represent each
source code. Then, we use a vector representation and by
using a cosine similarity (see Equation 1) we found the sim-
ilarities between two source code.

The eleven features are: number of lines with code, num-
ber of white spaces, number of tabulations, number of empty
lines, number of functions, average word length, number of
upper case letters, number of lower case letters, number of
under scores, number of total number of words in a source
code, lexical richness.

5. EXPERIMENTAL EVALUATION
This evaluation was perform with the training provided

by the shared task. We carried out a series of experiments
using single views in order to find the amount of relevant
information given by each representation.

For each experiment we compute the similarities values of
each source code files given in the training data. Then, we
measure the performance of each proposed representation
by means of establishing a manual threshold for considering
when two codes are plagiarized (re-used). That threshold

was set from 10 to 90 percent of similarity. For each thresh-
old we evaluated the precision, recall and F-measure.

The results of this evaluation are given in figures 1 to
6. Figure 1 presents the performance of the lexical view,
i.e., using a character 3-grams model without considering
reserved words. We found that a good compromise between
precision and recall is reached at 80% of similarity, when
the f-measure is 0.56. Figure 2 shows the performance of
the stylistic representation. In general, the results of this
representation were not good.
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Figure 1: Lexical view. Best result is obtained with
the 80% of similarity between two methods
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Figure 2: Stylistic view. A high recall is obtained
for every similarity threshold, but also very low pre-
cision.

For the structural representation, as we mentioned before,
we used two representations: data types function’s signa-
tures representation and names from the function’s signa-
tures representation. For each one, we define two ways to
compute the similarity: (a) using the maximum value of
similarity and (b) using the average of the similarities from
all the functions into two source codes. Figures 3 and 4 show
the data type function’s signature representation. The best
results are obtained when the similarity is 90% (0.14 of f-
measure) when considering the maximum, and 50% (0.16 of
f-measure) when considering the average.

The performance from the second proposed representa-
tion, i.e. the structural view (name of the function’s signa-
ture representation) is shown in 5 and 6. The results show
that the best F-measure, i.e., 0.26 and 0.22, was obtained



when the similarity threshold between codes was set to 40%
and 20%, respectively.
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Figure 3: Structural view: data type of function’s
signatures using the maximum value of similarities
between functions. Best result is obtained with
more than 90% of similarity between two methods
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Figure 4: Structural view: data type of function’s
signatures using the average value of similarities be-
tween functions. Best result is obtained with 50%
of similarity between two methods

All the results shown here are from C language, however,
similar results were obtained in Java data set.

6. SUBMITTED RUNS
We submitted three runs for the task based on three com-

binations of the proposed representations, considering the
performance over the training set. Details about the runs
and the results are shown below.

1. Lexical view only (run 1). For this experiment, we
used the representation described in section 4.1 using
a threshold of similarity of 50%. The results from C
and Java are shown in Table 1.

Table 1: Results over the test set for run 1
Precision Recall F-measure

C 0.006 1.00 0.013
Java 0.349 1.00 0.517
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Figure 5: Structural view: identifiers of function’s
signatures using the maximum value of similarities
between functions. Best result is obtained with 40%
of similarity between two methods
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Figure 6: Structural view: identifiers of function’s
signatures using the average value of similarities be-
tween functions. Best result is obtained with more
than 20% of similarity between two methods

2. Combination of Lexical and Structural views
(run 2). For this experiment, we used a combina-
tion of two views: lexical view as in the previous run
(LexSim), and the structural view with both represen-
tations (DTSim and NameSim). Since the experimen-
tal evaluation over the training test shows much better
results with the lexical view, we decided to give more
weight to this factor. The evaluation experiments also
shows that the two representations for the structural
view are complementary, thus in order to use this infor-
mation we use both with equal weight. The Equation
7 shows the employed linear combination.

sim = (0.5∗LexSim)+(0.25∗DTSim)+(0.25∗NameSim)
(7)

The results of this experiment are shown in Table 2.

Table 2: Results over the test set for run 2
Precision Recall F-measure

C 0.005 0.950 0.010
Java 0.019 0.928 0.037



3. Supervised approach (run 3). Here we decided to
used all the similarities computed from all the views
and used a learning algorithm to classify all source
code pairs into two classes: re-use and no-re-use. For
this we use a J48 decision tree implemented in Weka.
The results over the test data are shown in table 3.

Table 3: Results over the test set for run 3
Precision Recall F-measure

C 0.006 0.997 0.013
Java 0.691 0.968 0.807

From previous tables we can see that our best results was
achieve for the supervised approach (run3). To get the big
picture about the performance in this task, Table 4 shows
our best system (run3) agains the best systems in each lan-
guage and the baseline (the baseline consists of a charac-
ter 3-gram model weighted using term frequency and cosine
measure to compute the similarity. This baseline considers
as re-used cases all source code pairs that surpass a similar-
ity threshold of 0.95).

Table 4: Comparison agains the best method
Precision Recall F-measure
C Language

Our run 3 0.006 0.997 0.013
Best system 0.282 1.00 0.440

Baseline 0.258 0.345 0.295
Java Language

Our run 3 0.691 0.968 0.807
The 2nd best system 0.530 0.995 0.692

Baseline 0.457 0.712 0.556

From Table 4 we can draw interesting conclusions. First,
our obtained recall value for detecting source code re-use in
C are competitive with the recall of the best system (1.00
and 0.997), while ours is higher than the baseline. The prob-
lem was that our system detected a lot more pairs of source
code that were not source code re-used.

The opposite happened with the performances for Java.
Here our system performs very well, in recall as well as in
precision values, which put our system at the first place in
the performance’s ranking of all the participant systems in
the task.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have described the experiments per-

formed by the Language and Reasoning group from UAM-C
in the context of the SOCO 2014 evaluation exercise. Our
proposed system was designed for addressing the problem of
source code re-use detection by means of employing differ-
ent types of representations. Our intuitive idea states that
different aspects (i.e., either structural or superficial) pro-
vide different (important) information and they must not be
mixed with other aspects when representing source codes.

Accordingly, we presented a method that can help to rep-
resent a source code in several forms, each of them attempt-
ing to highlight different aspect of a code. Particularly, we
proposed three representations: i) lexical, ii) structural and,

iii) stylistic. From the lexical view, we used a modified im-
plementation of the method proposed by Flores’s [6]. For
the structural view, we proposed two similarity metrics that
consider the function’s signatures within the source code.
Finally, for the third view we defined eleven features that
intent to extract some stylistic attributes from the original
author that are more difficult to obfuscate.

Obtained results during the training phase, demonstrate
that in fact each type of representation provide some infor-
mation that can be used to detect some particular cases of
source code re-use. A more deep analysis need to be per-
form in order to determine what are the characteristics of
those cases that are accurately detected by each proposed
representation and, hence, to come up with a more adequate
form of combining these representations.

Finally, obtained results during the test phase motivate us
for keep working on the same direction. It is important to
remark that although the obtained F −measure were low,
it was no the case for the precision and recall values for the
experiments in Java and C respectively. Particularly, for
the test experiments performed in the C subset, we believe
that the low precision values are due to the fact that several
source codes are not just in pure C, and instead, also C/C++
alike programs.
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