
High level features for detecting source code plagiarism
across programming languages

A. Ramírez-de-la-Cruz
Universidad Autónoma

Metropolitana
Unidad Cuajimalpa

México D.F.

G. Ramírez-de-la-Rosa
∗

Universidad Autónoma
Metropolitana

Unidad Cuajimalpa
México D.F.

C. Sánchez-Sánchez
Universidad Autónoma

Metropolitana
Unidad Cuajimalpa

México D.F.

H. Jiménez-Salazar
Universidad Autónoma

Metropolitana
Unidad Cuajimalpa

México D.F.

C. Rodríguez-Lucatero
Universidad Autónoma

Metropolitana
Unidad Cuajimalpa

México DF.

W. A. Luna-Ramírez
Universidad Autónoma

Metropolitana
Unidad Cuajimalpa

México D.F.

ABSTRACT
In this paper we describe the participation of the Language
and Reasoning group from UAM-C in the context of the
Cross Language SOurce COde re-use competition (CL-SOCO
2015). We proposed a representation of source code pairs by
using five high level features; namely: i) lexical feature, ii)
stylistic feature, iii) comments feature, iv) programmer’s
text feature, and v) structure feature. We combine these
different representations in three ways, each of which was
a run submission for the CL-SOCO competition. Obtained
results indicate that proposed representations provide some
information that allows to detect particular cases of source
code re-use.

CCS Concepts
•Information systems → Content analysis and fea-
ture selection; Near-duplicate and plagiarism detec-
tion; •Applied computing → Document analysis;

Keywords
High level feature; Document representation; Plagiarism de-
tection; Source code plagiarism

1. INTRODUCTION
Source code re-use identification has been an interesting

topic in two fronts: in the software industry and in the
academia. On one hand, software companies are very in-
terested on protect their own software developments; thus,
they invest lots of effort and money in trying to do so. On
the other hand, the academia, mainly on computing related
areas, worries that their students do not plagiarize source
code neither from other students nor from the forums on
the Internet [5].

The competition of Source Code Re-Use emerge in this
context, when in 2014 [8] they invited to the scientific com-
munity to a shared task in order to evaluate systems that

∗Corresponding author. E-mail address:
gramirez@correo.cua.uam.mx

identify re-use source code cases in a monolingual scenario.
Later, in this year 2015, the task considers a cross-language
scenario, that is, when a programmer tries to re-use source
code from one language, say Java, to another, say C.

In this paper, we present our methodology to solve the
problem of finding source code re-use cases across Java and
C programming languages. Consequently, we use a set of five
high level features within a classification problem, namely:
lexical, stylistic, comments, programmer’s text, and struc-
tural features.

The rest of the paper is organized as follows, in Section
2 we describe the research work more closely related to our
proposed methodology. In Section 3, we briefly describe the
shared task. Then, in Section 4, we describe the computa-
tion of each of our five proposed features. Our Section 5
presents the experiment evaluation carried out on the train-
ing set. Section 6 shows the details of submitted runs, and
finally in Section 7, we present our conclusions and some
future perspectives.

2. RELATED WORK
There are several approaches and tools for finding plagia-

rism in source code [10]. Some of the most representatives’
approaches are those that try to find syntactic similarities
through the codes, in the same source language. Some of
those are based on searching similar n-grams or small char-
acter sequences (strings) between two source codes. Some
examples are: the proposed by Flores et al. [7] and, the
proposed by Wettel et al. [15] respectively. Likewise, other
approaches have tried to detect lexical similarities. For ex-
ample the proposed approaches by Krinke et al. [12] or Chae
et al. [4] that look for graph dependencies (of how methods
are called) inside the abstract syntax tree.

Focusing beyond watching a certain characteristic, the ap-
proach proposed by Ramirez et al. [13] evaluates a set of
three different types of features in order to determine the
similarity between code sources. The features are: 1) lexi-
cal (character n-grams), 2) structural (function names and
parameter names and types), and 3) stylistic (the number
of lines of code, the number of white spaces, the number of

12

tabulations, the number of empty lines, the number of de-
fined functions, average word length, the number of upper
case letters, the number of lower case letters, the number of
under scores, vocabulary size, and the lexical richness). This
combination has shown important aspects, with acceptable
results, for determining plagiarism between pairs of Java
source codes.

On the other hand, some researchers have focused on try-
ing to identify similarities or code clones in software writ-
ten in different languages. Basically, their methods use an
intermediate language to change the codes into it, but at
the end, they search for similarities in the same language.
An example of such methods is the proposal of Al-Omari
et al. [1] in which clones of software, specified in different
languages belonging to .NET framework, can be recognized.
In this proposal the software is analyzed when it is trans-
formed into the Common Intermediate Language, which is
the result of compiling source code in .NET, to finally look
for similarities.

Another example of the use of an intermediate language
is the work of Brixel et al. [3]. They focus on identifying
language-independent code clones, for doing that they pre-
processed the source codes, to take them to an intermediate
language, and then they use an alignment method based on
the parallel principle at local resolution (character level) to
compute similarities between documents.

There are other proposals that do not take the source code
as main point, instead they focus on the source code file con-
tent. That is the case of the approach proposed by Vidhya et
al. [14] where two types of metrics are calculated. The first
kind of metrics work at method level: Number of lines of
code, arguments, function calls, local variables, conditional
statements, looping statements, return statements, assign-
ment statements. The second type of metrics work at file
level: Number of lines of code, variables declared, methods
defined, function calls, and sequences of function calls. The
author compare two documents by differences in each of the
metrics described before; then, they detect a case of clone
using a manual threshold of the average of the differences in
the metrics computed.

As can be observed, some of the methods described be-
fore are expensive to apply in large collections (for instance
those based on compute the syntax tree), others depend on
translators for each programming language to being used,
and others need a manually thresholds to identify re-use
(plagiarized) source code pairs. Contrary to these previous
methods, we proposed to use five high level features that are
both, easy to compute and considered more than one type
of aspect in the source code files.

3. SHARED TASK DESCRIPTION
CL-SOCO, Cross Language Detection of SOurce COde

Re-use, is a shared task that focuses on cross-language source
code re-use detection. Participant systems were provided
with a set of cross-lingual training and test sets of source
code files. The task consists on identifying the source code
pairs that have been re-use at a document level across pro-
gramming languages, particularly, Java and C. The details
about the tasks are described in [9]. Note that the rele-
vance judgments represent cases of re-use in both directions,
i.e., the direction of the re-use is not being detected. The
provided training set has 599 pairs (Java-C) of source code
documents and the test set has 79 source code documents.

4. PROPOSED HIGH LEVEL FEATURES
In this section we describe our proposed representation for

source code documents as a set of five high level features,
in order to identify source code re-use. To compute each
of these features, we represent a document in five different
ways. Particularly, for the lexical, comments and program-
mer’s text features, we represent each document as a set of
characters n-grams; for the stylistic feature, we use eleven
attributes; and for the structural feature we use another ten
attributes.

The idea behind these set of high level features is to cap-
ture aspect of source code that are inherent to the program-
mer more than a particular programming language. Thus,
the stylistic feature capture information about the writing
style of the programmer; the comments’ feature attends for
only the information in natural language that the program-
mer uses to explain the code; programmer’s text feature takes
into account the strings that the program produces, that is,
text that, again, little has to do with the programming lan-
guage per se. Additionally, the lexical and structural fea-
tures take advantage of the fact that both language at hand
(that is, Java and C) share, at some extent, some syntax.
Next, we describe each of the five high level proposed fea-
tures.

Lexical feature. The idea behind this representation is
to find a global similarity along the entire document using
the representation proposed by Flores [6]. We compute this
feature in the same way as is described in [13]. That is, we
use a bag of character trigrams where all the white spaces
and line-breaks are deleted and the letters are changed into
lowercase. Additionally, as we know the language of each
source code file a priori, we eliminate the reserved words
within the document. Consequently, given two source code
documents D1 and D2 each one is represented as a vector
according to the vector space model [2], where the dimen-
sion of these vector is given by the vocabulary of character
trigrams in both documents. Finally, the lexical feature is
compute as the cosine similarity of these two vectors (see
Equation 1).

sim(D1, D2) =

−→
D1 ·
−→
D2

‖
−→
D1‖‖

−→
D2‖

(1)

Stylistic feature. As in [13] we took into account a set
of eleven stylistic characteristics of the programmer code
written style. The characteristics are: the number of lines
of code, the number of white spaces, the number of tabu-
lations, the number of empty lines, the number of defined
functions, average word length, the number of upper case
letters, the number of lower case letters, the number of un-
der scores, vocabulary size, and the lexical richness (i.e.,
the total number of tokens over the vocabulary size). To de-
termine the stylistic feature we use a vector representation
for all these attributes and we applied the cosine similarity
(Equation 1) between the two vectors.

Comments feature. As we mentioned before, we think
that the explanations and details of the procedures that are
given in the form of comments have particularities that are
inherent to the programmer; thus, these texts allow to cap-
ture information that while re-using the code source can be
left unmodified. Accordingly, we use everything between
blocks / ∗ ... ∗ / and everything after // as comments.

First we concatenated all the text written as comments in

13

the source code document, then we compute the character
trigrams. The next procedure was similar to the described
previously for the lexical feature; that is, to determine the
comments feature we use a vector representation and applied
the cosine similarity as in Equation 1.

Programmer’s text feature. To compute this feature
we considered all the text that were passed as function’s ar-
guments (in prints sentences, for instance), or string that
are assign to some variable (e.g. x="Hello World!"). All
these texts were concatenated together as we did with the
previous features. Finally we use the same vector representa-
tion using character trigrams; then, by computing the cosine
similarity, as in Equation 1, we determine the programmer’s
text feature for two given source code documents.

Structural feature. For this feature we took into ac-
count ten attributes to represent a source code document.
These attributes are: the number of relational operations,
number of arithmetic operations, number of assignment state-
ments, number of function calls, number of looping state-
ments, number of write access, number of comments, num-
ber of functions or procedures defined, number of control
flow statements, and number of return statements. These
ten attributes form a vector for each document; then, the
similarity of two given documents is computed by the cosine
similarity given by the Equation 1.

5. EXPERIMENTAL EVALUATION
The evaluation was performed with the training set pro-

vided in the shared task (see Section 3). We carried out a
series of experiments using single features in order to find
the amount of relevant information given by each one of our
used high level features.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
co

re

Similarity threshold

Lexical Feature

F mesure
Precision

Recall

Figure 1: Results of classification when using the lexical
feature only with manually set thresholds.

For each experiment we computed the similarities values
of each source code file given in the training set. Then, we
measured the performance of each proposed representation
by means of establishing a manual threshold for considering
when two codes are plagiarized (re-used). That threshold
was set from 10 to 90 percent of similarity in increments of
10%. For each threshold we evaluated the Precision, Recall
and F-measure1.

The results of our evaluation are given in Figures 1 to
5. From these results we can observe that there are three

1We compute the F-measure as describe in the evaluation
script provided by CL-SOCO 2015 at http://users.dsic.upv.
es/grupos/nle/clsoco/

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
co

re

Similarity threshold

Stylistic Feature

F mesure
Precision

Recall

Figure 2: Results of identification of source code re-use when
using the stylistic feature only with manually set thresholds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
co

re

Similarity threshold

Comments Feature

F mesure
Precision

Recall

Figure 3: Results of identification of source code re-use when
using the comments feature only with manually set thresh-
olds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
co

re

Similarity threshold

Programmer’s text Feature

F mesure
Precision

Recall

Figure 4: Results of identification of source code re-use when
using the programmer’s text feature only with manually set
thresholds.

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
co

re

Similarity threshold

Structural Feature

F mesure
Precision

Recall

Figure 5: Results of identification of source code re-use when
using the structure feature only with manually set thresh-
olds.

features, lexical, comments and programmer’s text features
that perform very well in Precision; this means that by using
all the written text in natural language allows to find almost
every pair that has been re-use from each other. However,
with two features, namely: stylistic and structural, we ob-
tained very good Recall. Consequently, we hypothesize that
by using the five high level features as a representation of
each pair of code, we may have a compromise of Precision
and Recall, hence, a better global performance.

It is worth to mention that we did not consider the entire
training set (599 pairs). The reason to do this is that we
realized that some pairs labeled as re-use cases were very
different (i.e., they solved complete different problems). In
order to eliminate noise to our classification models, we com-
puted the similarity (lexical similarity) among the 599 pairs;
then, we computed the average (x) and standard deviation
(σ) of those similarity values and we removed all pairs with
similarity values below a standard deviation. This way we
only conserved pairs with similarity value grater than (x−σ),
that give us a total of 477 pairs.

6. SUBMITTED RUNS
We submitted three runs for the posed task based on our

proposed representation. For our first two submissions (run
1 and run 2) we tackled the problems as a binary classifica-
tion problem, where the classes were re-use and not re-use.
We trained our model using a Random Forest algorithm with
default parameters in the Weka [11] platform.

1. Monolingual model (Run 1). As our five proposed
features focus on aspect that little has to do with a spe-
cific programming language, we trained a model using
source code re-use pairs for C language only, this set
was the same provided by SOCO 2014 [8]. This train-
ing set contains 79 source code files with 26 pairs of
re-use source codes. Once the model was trained we
classified the test data (from CL-SOCO 2015) and the
results are shown in Table 1.

2. Cross-language model (Run 2). Here we decided
to train our model with the training set of cross lan-
guage examples (the subset of 477 pairs), then we clas-
sified the test data and results of this evaluation is
shown in the third row in Table 1.

3. Lexical feature only (run 3). For this third run,
we compute the lexical similarity of every single pair
in the test set. As we see in the training set (Figure 1)
we used a threshold of similarity of 30%. The results
are shown in Table 1.

Table 1: Results of our submitted runs.
Precision Recall F-measure

Monolingual
model (run 1)

0.988 0.634 0.772

Cross-language
model (run 2)

0.620 0.771 0.687

Lexical feature
only (run 3)

0.496 0.962 0.655

In Table 1 we can see that our best model is the monolin-
gual one. This result validates, to some extent, that re-use
cases can be identified by aspects that has to do more with
the text in natural language than information of particular
programming language.

To get a better idea of the performance in this task, in
Table 2 we show our best system (run 1) against the average
performance results of all participant systems and the second
best system. It is worth to mention that our system has the
best performance out of a total of 12 systems.

Table 2: Comparison among all participants systems.
Precision Recall F-measure

Our Run 1 0.988 0.634 0.772
Second best 1.000 0.603 0.752

Average all systems 0.916 0.611 0.706

Table 2 shows that our monolingual model globally out-
performs the others systems, that is, among all the actual
re-use pairs we effectively identify most of them, however we
are only 98.8% sure that they are in fact re-use cases.

7. CONCLUSIONS
In this paper, we have described the experiments per-

formed by the Language and Reasoning group from UAM-C
in the context of the CL-SOCO 2015 evaluation exercise.
Our proposed system was designed for addressing the prob-
lem of cross-language source code re-use detection by means
of employing five high level features within a classification
problem.

Particularly, we proposed the following features: i) lexi-
cal feature, ii) stylistic feature, iii) comments feature, iv)
programmer’s text feature, and v) structure feature. These
features are more oriented to detect aspects that the pro-
grammers leave in natural language more than in a particu-
lar programming language.

Obtained results indicate that our proposed features can,
to some extent, identify cases of source code re-use across
Java and C programming language. A deeper analysis need
to be perform in order to determine which feature are the
most useful in this task and if they are o not correlated.

8. ACKNOWLEDGMENTS
Authors would like to thank UAM Cuajimalpa for its sup-

port.

15

9. REFERENCES
[1] Al-Omari, F., Keivanloo, I., Roy, C. K., and

Rilling, J. Detecting clones across Microsoft.NET
programming languages. In Reverse Engineering
(WCRE), 2012 19th Conference on Working (2012),
IEEE, pp. 405–414.

[2] Baeza-Yates, R. A., and Ribeiro-Neto, B.
Modern Information Retrieval. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[3] Brixtel, R., Fontaine, M., Lesner, B., Bazin, C.,
and Robbes, R. Language-independent clone
detection applied to plagiarism detection. In Source
Code Analysis and Manipulation (SCAM), 2010 10th
IEEE Working Conference on (2010), IEEE,
pp. 77–86.

[4] Chae, D.-K., Ha, J., Kim, S.-W., Kang, B., and
Im, E. G. Software plagiarism detection: a
graph-based approach. In Proceedings of the 22nd
ACM international conference on Conference on
information & knowledge management (2013), ACM,
pp. 1577–1580.

[5] Chuda, D., Navrat, P., Kovacova, B., and
Humay, P. The issue of (software) plagiarism: A
student view. IEEE Transactions on Education 55, 1
(February 2012), 22–28.

[6] Flores, E. Reutilización de código fuente entre
lenguajes de programación. Master’s thesis,
Universidad Politécnica de Valencia, Valencia, España,
February 2012.

[7] Flores, E., Barrón-Cedeno, A., Rosso, P., and
Moreno, L. Towards the detection of cross-language
source code reuse. In Natural Language Processing and
Information Systems. Springer Berlin Heidelberg,
2011, pp. 250–253.

[8] Flores, E., Rosso, P., Moreno, L., and
Villatoro-Tello, E. PAN@FIRE: Overview of
SOCO track on the detection of SOurce COde Re-use.
In Proceedings of the Sixth Forum for Information
Retrieval Evaluation (FIRE 2014) (December 2014).

[9] Flores, E., Rosso, P., Moreno, L., and
Villatoro-Tello, E. PAN@FIRE 2015: Overview of
CL-SOCO track on the detection of cross-language
SOurce COde Re-use. In Proceedings of the Seventh
Forum for Information Retrieval Evaluation (FIRE
2015) (December 2015).

[10] Gondaliya, T. P., Joshi, H., and Joshi, H. Source
code plagiarism detection ,SCPDet: A review.
International Journal of Computer Applications 105,
17 (November 2014), 27–31.

[11] Hall, M., Frank, E., Holmes, G., Pfahringer,
B., Reutemann, P., and Witten, I. H. The WEKA
data mining software: An update. SIGKDD
Explorations Newsletter 11, 1 (2009), 10–18.

[12] Krinke, J. Identifying similar code with program
dependence graphs. In Reverse Engineering, 2001.
Proceedings. Eighth Working Conference on (2001),
IEEE, pp. 301–309.

[13] Raḿırez-de-la Cruz, A., Raḿırez-de-la Rosa,
G., Sánchez-Sánchez, C., Luna-Raḿırez, W.,
Jiménez-Salazar, H., and Rodŕıguez-Lucatero,
C. UAM@SOCO 2014: Detection of source code

re-use by mean of combining different types of
representacions.

[14] Vidhya, K., Sumathi, N., and Ramya, D. Cross
language higher level clone detection-between two
different object oriented programming language source
codes. In Proceedings of International Conference on
Inter Disciplinary Research in Engineering and
Technology 2014 (2014), ASDF, pp. 21–27.

[15] Wettel, R., and Marinescu, R. Archeology of code
duplication: Recovering duplication chains from small
duplication fragments. In Symbolic and Numeric
Algorithms for Scientific Computing, 2005. SYNASC
2005. Seventh International Symposium on (2005),
IEEE, pp. 63–70.

16

