
Heterogeneous-Graph Convolutional Network for
Authorship Verification
Notebook for PAN at CLEF 2023

Andric Valdez-Valenzuela1, Jorge Alfonso Martinez-Galicia1 and
Helena Gómez-Adorno2

1Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México, CDMX, México
2Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México,
Ciudad de México, México

Abstract
Authorship Analysis (AA) is a research area that aims to investigate and identify characteristics in
the writing style in text documents to extract relevant information about the author. One of the most
common tasks in recent years within this area is Authorship Verification (AV). AV aims to determine if
two given text documents were written or not by the same author by measuring different characteristics.
The PAN@CLEF 2023 AV challenge [1][2] requires solving the task on a cross-discourse type and
open-set collection of essays, emails, interviews, and speech transcriptions. We model a text graph
representation and build a Graph Neural Network (GNN) to extract relevant features from the text
documents. Specifically, we use a heterogeneous text graph representing the entire corpus, then use it as
input for a Graph Convolutional Network (GCN) to obtain learning vectors (embeddings), and finally
use these vectors to train a classification model (fully connected network).

Keywords
Authorship verification, Text graph, Heterogenous graph, Graph Neural Networks

1. Introduction

The Authorship analysis research field studies the characteristics that help to define an author’s
writing style. The features can be extracted using text samples of the authors. This research area
includes authorship attribution, author profiling, author clustering, and plagiarism detection
[3]. The AV task aims to determine if two given text documents were written or not by the
same author.

To approach the AV task at PAN 2023, we use a heterogeneous text graph representing
the entire corpus, then use it as input for a Graph Convolutional Network (GCN) to obtain
learning vectors (embeddings), and finally use these vectors to train a classification model (fully
connected). We also evaluated three strategies (short, medium, and full) for representing texts
as graphs based on the relation of the Part of Speech (POS) labels and the co-occurrence of

CLEF 2023: Conference and Labs of the Evaluation Forum, September 18–21, 2023, Thessaloniki, Greece
$ andric.valdez@gmail.com (A. Valdez-Valenzuela); jorgetonatiuhmg@gmail.com (J. A. Martinez-Galicia);
helena.gomez@iimas.unam.mx (H. Gómez-Adorno)
� https://helenagomez-adorno.github.io (H. Gómez-Adorno)
� 0000-0002-6966-9912 (H. Gómez-Adorno)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:andric.valdez@gmail.com
mailto:jorgetonatiuhmg@gmail.com
mailto:helena.gomez@iimas.unam.mx
https://helenagomez-adorno.github.io
https://orcid.org/0000-0002-6966-9912
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

words. The graph representation provides structural information that can help us distinguish
writing styles independently of the discourse type. The source code of our approach is freely
available at our GitHub repository 1

This paper is structured as follows: Section 2 summarizes related works on Authorship
Analysis. Section 3 describes the dataset used for the task. Section 4 presents the Heteroge-
neous Graph representation used to feed the Graph Neural Network. Section 5 describes the
Graph Convolutional Network architecture, while the experiments and the obtained results are
presented in Section 6. Section 7 presents the conclusions and future work.

2. Related work

Traditional authorship analysis relies on feature extraction to train a classification algorithm
through supervised learning or similarity measures. The extracted feature method can be at any
level of language description. The semantic level, i.e., semantic dependencies, synonyms. The
syntactic level, i.e., chunks, POS tags, sentence, and phrase structure. The character level, i.e.,
character types, character n-grams, count of special characters. The lexical level, i.e., misspelled
words, sentence length, word length, a bag of words, vocabulary richness [4]. Some of the
most commonly used supervised classification algorithms used in AV analysis are discriminant
analysis, support vector machines, decision trees, neural networks, and genetic algorithms [5].

Another option that can effectively model relationships and structural information is the
mathematically constructed graph representation. This representation can be possible using
feature terms as vertices and significant relations between the feature terms as edges. The
graph-based approach consists of identifying relevant elements in the text, i.e., words, sentences,
paragraphs, etc., and modeling them as nodes in the graph. Then meaningful relations between
these elements are considered to be edges. Typically, the features used as nodes in the graph
are words, sentences, paragraphs, documents, and concepts. To define the edges, syntactic,
semantic relations, and statistical counts are usually used [6].

Some research works applied this text graph representation approach to solving different
problems related to text analysis or classification tasks. For example, Liang Yao et al. [7]
implemented a text classification model (datasets: Movie Review, 20-Newsgroups, etc.) using a
GNN architecture with convolution layers which they trained using a text graph (constructed
from the corpus) based on in the co-occurrences of words and the relationship of words in
documents. When evaluating the model, its results present a performance improvement com-
pared to traditional classification methods, and in addition, they require less training data to
achieve good performance. Another example for Embarcadero-Ruiz et al. [8] presented a work
focused on the AV task; they implemented a Siamese Network architecture composed of GCNs
and pooling and classification layers. The main idea was to represent the text documents of
the corpus as text graphs, then use them as input to the GCN to extract relevant features from
the graph, and finally apply a classification layer that verifies the authorship of a document. A
collection of fanfiction texts provided by PAN@CLEF 2021 was used to evaluate this approach.
Their results show performance similar to state-of-the-art performance and tend to be better
than the traditional ones.

1https://github.com/PLN-disca-iimas/AuthorshipVerification-heterogeneousGraph

https://github.com/PLN-disca-iimas/AuthorshipVerification-heterogeneousGraph

Table 1
Total number of problems, number of problems in the positive class, number of texts, and number of
authors on our splits.

Split Total Positive Texts Authors

Train 8024 4012 786 48
Validation 372 186 48 4

Test 440 220 52 4

3. Authorship Verification Dataset at PAN 2023

For the Authorship Verification task, the training dataset provided by the PAN@CLEF 2023 [1]
organization consists of four cross-discourse types (DT): essays, emails (as written language),
interviews, and speech transcriptions (as spoken language). The corpus comprises texts from 56
authors. All authors have similar ages (18-22) and are native English speakers. The topic of text
samples is not restricted. At the same time, the level of formality can vary within a certain DT;
the total number of text pairs in the dataset provided by the PAN@CLEF 2023 is 8,836. Each
problem is composed of two texts belonging to two different DTs.

We split the dataset into training, validation, and testing to evaluate our model. We trained our
model on the training set and used the validation split to calibrate the model’s hyperparameters.
The testing set is only to achieve a reference score of the model. We did not use any samples in
the testing set to calibrate our model, so the scores obtained when we evaluated the model on
this set tells us about the model’s generalization ability.

Our splits were done using the pairs provided in the training dataset; we made these splits
author-disjoint, which is no text in one partition has the same author as any text in a different
partition. Since we had 8,836 problems and only 56 authors, splitting the dataset in an author-
disjoint way yielded unbalanced splits. As a result, we got more positive problems than negative
ones since the pairs with authors from different partitions were removed. New positive instances
(same author) and new negative instances (different authors) were generated to balance the
partitions. To achieve this, we applied the following methodology: Let sets 𝐴 and 𝐵 be the
subsets of documents from the partition grouped by author. Positive and negative instances
were obtained applying Cartesian product 𝑃 = 𝐴×𝐴 and 𝑁 = 𝐴×𝐵, respectively. Then, we
filtered pairs of the same DT and randomly selected positive and negative instances from 𝑃 and
𝑁 sets to balance the training, validation, and test partitions.

The new dataset has a balanced proportion of true and false problems. Table 1 shows the
total number of problems and the number of problems in the positive class. In addition, the
table shows the number of texts and authors on each partition.

4. Modeling text as Graph

First steps before obtaining our graphic representation, We perform a text pre-processing con-
sisting of the following steps:

• Normalize text to lowercase.
• Substitution of non-ASCII characters.2

• Remove punctuation and stop words.
• Tokenize and obtain the POS labels.

Then, We applied the approach proposed by Embarcadero-Ruiz et al. [8], where three types of
word groups are built based on the POS labels of the word tokens: Short, Medium, and Full. For
POS tags, we use a Python package called NLTK3 package which uses the PENN-Treebank POS
labels [9], and then add two additional tags: $PUNCT to mark all punctuation and $OTHER to
mark any other words that the NLTK model could not identify. In total, we decided to consider
38 labels. After this process, we obtain a list of tuples, each token with its corresponding POS
label.

To generate these word groups, we defined the following set of POS labels, and denote it as
REDUCE_LABELS (that is, group by word POS using this set):

REDUCE_LABELS = [‘JJ’, ‘JJR’, ‘JJS’, #Adjectives
‘NN’, ‘NNS’, ‘NNP’, ‘NNPS’, #Nouns
‘RB’, ‘RBR’, ‘RBS’, #Adverbs
‘VB’, ‘VBD’, ‘VBG’, #Verbs

‘VBN’, ‘VBP’, ‘VBZ’, #Verbs
‘CD’, #Cardinal numbers
‘FW’, #Foreign words
‘LS’, #List item marker

‘SYM’, #Symbols
‘$OTHER’, # Others]

Then We apply the following rule/formula to group the word/tokens by these POS labels, for
this: let P be the parsed text as a list of tuples, l(P) the number of elements in the list, and P[i]
the i-th element in the list. For each P[i] = (word, pos) in P, we can define

𝑀 [𝑖] =

{︂
(𝑤𝑜𝑟𝑑, 𝑝𝑜𝑠) 𝑖𝑓 𝑝𝑜𝑠 /∈ 𝑅𝐸𝐷𝑈𝐶𝐸_𝐿𝐴𝐵𝐸𝐿𝑆
(𝑝𝑜𝑠, 𝑝𝑜𝑠) 𝑖𝑓 𝑝𝑜𝑠 ∈ 𝑅𝐸𝐷𝑈𝐶𝐸_𝐿𝐴𝐵𝐸𝐿𝑆

where 𝑀 is the list defined by the tuples masked as explained.
Finally, after applying these We build a heterogeneous word document graph for a whole

corpus to represent text as a graph [7]. In this graph type, words and documents are represented
as nodes, and the relation between word to document and word to word as edges. Specifically,
the edge between two-word nodes is built by word co-occurrence information (when two words
appear together in the text) and the relation between word-document nodes is built if the word
exists in that text document. As weights/attributes, the word-to-document relation has the
Term Frequency-Inverse Document Frequency (TFIDF) measure, and the word-to-word relation
has the Point-wise Mutual Information (PMI) measure (see figure 1).

2https://github.com/avian2/unidecode
3https://www.nltk.org

https://github.com/avian2/unidecode
https://www.nltk.org

Figure 1: Heterogeneous Graph structure. The words (W1 to W7) and documents (D1 to D3) are
represented as nodes. The relations word-word (black arrow with PMI metric as weights) and document-
word (red arrow with TF-IDF metric as weights) are represented as edges.

5. Graph Convolutional Network

The model for the graph structure is a Graph Convolutional Network proposed in [7][10].
Originally, this network was used for text classification, but it will be used as the feature
extraction stage for texts in this case.

The model consists of a multilayer neural network that operates directly on a graph and
induces node vector embedding based on their neighborhoods’ properties. A Graph Convo-
lutional Network with two layers enables the transmission of messages between nodes that
are at most two steps apart. This means that even though there are no direct connections
between documents in the graph, the two-layer GCN facilitates the exchange of information
between pairs of documents. In this case, experiments with N layers were performed to find the
right hyperparameter for the corpus and the task. The model includes a reduction step where
the embeddings corresponding to an authorship verification problem are concatenated, and a
fully connected network is used for classification (dense and linear hidden layers with ReLU
activation function, and an output layer with Sigmoid activation function). Figure 2 illustrates
the model architecture.

Figure 2: Graph Convolutional Network Model

Table 2
Validation and Test scores varying graph type (short, medium, full), window size, function words, and
punctuation marks. Highlighted in bold are the best validation and test scores for each graph type.

Short Graph Medium Graph Full GraphFunctional
Words

Punctuation
marks

Window
Size Validation Test Validation Test Validation Test
10 0.6605 0.7046 0.659 0.6902 0.6223 0.6623
20 0.6614 0.7068 0.5971 0.6862 0.6146 0.6742Yes
30 0.6701 0.6823 0.6102 0.6749 0.6334 0.6644
10 0.702 0.6795 0.6674 0.6497 0.554 0.564
20 0.6741 0.6823 0.6638 0.6475 0.543 0.59

Yes

No
30 0.6761 0.6706 0.6503 0.6565 0.5231 0.5941
10 0.7189 0.7044 0.6756 0.6928 0.5878 0.5778
20 0.6481 0.6933 0.6717 0.7 0.5187 0.5986Yes
30 0.7051 0.6944 0.6757 0.6844 0.345 0.6
10 0.6654 0.6632 0.702 0.6251 0.5622 0.5422
20 0.6789 0.6823 0.6961 0.6559 0.5178 0.5768

No

No
30 0.6945 0.7033 0.6847 0.6647 0.5906 0.5876

6. Results

We trained the network using the cross-entropy loss function for all our experiments. To
measure the performance of all models, we use five metrics: Area Under the Receiver Operating
Characteristic curve Curve (AUC ROC), F1 score, Brier score [11], F0.5u score [12], and C@1
score [13]. For simplicity, in the results tables, we present the average of these five scores

We trained the neural network with a fixed number of epochs (from 100 to 200) and saved
the model that achieved the lowest loss in the validation split as our best model. We report the
score of the best model in the test split. The scores reported are the average of three distinct
runs over the same architecture. We did all our experiments with a dropout of 0.2 and a learning
rate of 0.0001.

In Table 2, we show the average score obtained by varying graph types (short, medium, full),
window sizes (10, 20, 30), function words 4 (yes, no), and punctuation marks 5 (yes, no). All
these experiments were made with 4 classification layers and 8 convolutional layers of type
GraphConv which is a basic implementation of the graph neural network model described by
Morris et al. [14].

7. Conclusions

This paper presents a heterogeneous text graph representing the entire corpus, then use it as
input for a Graph Convolutional Network to obtain learning vectors, and finally uses these
vectors to train a classification model. We also evaluated three graph strategies (short, medium,
and full) based on the relation of the Part of Speech (POS) labels and the co-occurrence of words.

For the dataset, we made splits (Train, Test, Validations) author-disjoint, which is no text in
one partition has the same author as any text in a different partition. After some experiments,

4Defined for the NLTK Python package: nltk.download(’stopwords’)
5Use of a regular expression deleting all characters different from letters and numbers

we obtained the best results (for validation and test partitions) for the short graph representation
compared to the other graph types (med, full).

For the PAN@CLEF 2023 AV challenge, We presented 3 final runs: 1 Short Graph, 1 Medium
Graph, and 1 Full Graph. For each one, We set the parameters based on the results obtained
from our test score (as shown in the table 2).

Acknowledgments

This work was supported by the Graduate Science and Engineering Computing (UNAM) and
the CONACYT scholarship program (CVU: 927264). Also, the authors thank CONACYT for the
computing resources provided through the Deep Learning Platform for Language Technologies
of the INAOE Supercomputing Laboratory.

References

[1] J. Bevendorff, I. Borrego-Obrador, M. Chinea-Ríos, M. Franco-Salvador, M. Fröbe, A. Heini,
K. Kredens, M. Mayerl, P. Pęzik, M. Potthast, F. Rangel, P. Rosso, E. Stamatatos, B. Stein,
M. Wiegmann, M. Wolska, , E. Zangerle, Overview of PAN 2023: Authorship Verification,
Multi-Author Writing Style Analysis, Profiling Cryptocurrency Influencers, and Trigger
Detection, in: A. Arampatzis, E. Kanoulas, T. Tsikrika, A. G. Stefanos Vrochidis, D. Li,
M. Aliannejadi, M. Vlachos, G. Faggioli, N. Ferro (Eds.), Experimental IR Meets Multi-
linguality, Multimodality, and Interaction. Proceedings of the Fourteenth International
Conference of the CLEF Association (CLEF 2023), Lecture Notes in Computer Science,
Springer, 2023.

[2] E. Stamatatos, K. Kredens, P. Pezik, A. Heini, J. Bevendorff, M. Potthast, B. Stein, Overview
of the Authorship Verification Task at PAN 2023, in: CLEF 2023 Labs and Workshops,
Notebook Papers, CEUR-WS.org, 2023.

[3] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, R. Shah, Signature verification using a"
siamese" time delay neural network, Advances in neural information processing systems
6 (1993).

[4] E. Stamatatos, A survey of modern authorship attribution methods, Journal of the
American Society for information Science and Technology 60 (2009) 538–556.

[5] E. Stamatatos, W. Daelemans, B. Verhoeven, M. Potthast, B. Stein, P. Juola, M. A. Sanchez-
Perez, A. Barrón-Cedeño, Overview of the author identification task at pan 2014, in: CLEF
2014 Evaluation Labs and Workshop Working Notes Papers, Sheffield, UK, 2014, 2014, pp.
1–21.

[6] S. S. Sonawane, P. A. Kulkarni, Graph based representation and analysis of text document:
A survey of techniques, International Journal of Computer Applications 96 (2014).

[7] L. Yao, C. Mao, Y. Luo, Graph convolutional networks for text classification, in: Proceedings
of the AAAI conference on artificial intelligence, volume 33, 2019, pp. 7370–7377.

[8] D. Embarcadero-Ruiz, H. Gómez-Adorno, A. Embarcadero-Ruiz, G. Sierra, Graph-based
siamese network for authorship verification, Mathematics 10 (2022) 277.

[9] M. A. Marcinkiewicz, Building a large annotated corpus of english: The penn treebank,
Using Large Corpora 273 (1994).

[10] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks,
arXiv preprint arXiv:1609.02907 (2016).

[11] G. W. Brier, et al., Verification of forecasts expressed in terms of probability, Monthly
weather review 78 (1950) 1–3.

[12] J. Bevendorff, B. Stein, M. Hagen, M. Potthast, Generalizing unmasking for short texts, in:
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), 2019, pp. 654–659.

[13] A. Peñas, A. Rodrigo, A simple measure to assess non-response, In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics (2011).

[14] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, M. Grohe, Weisfeiler
and leman go neural: Higher-order graph neural networks, in: Proceedings of the AAAI
conference on artificial intelligence, volume 33, 2019, pp. 4602–4609.

	1 Introduction
	2 Related work
	3 Authorship Verification Dataset at PAN 2023
	4 Modeling text as Graph
	5 Graph Convolutional Network
	6 Results
	7 Conclusions

