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Introduction

Overview 1. Calculate word-profile vectors — Find descriptive terms per class,

| , , exploiting the per-class frequency of the words
o Author Profiling: Predict author traits based solely on text

e Nowelty: PAN’16 features cross-genre evaluation(train on Twitter
texts and test on other genres)
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Data
2. Map documents in profile space, using the word-profile vectors,

from step 1, of the containing terms for each document
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& Users: 1070 | Tweets: 562812

Tasks: Age and Gender
"B Languages: English, Spanish and Dutch(gender only)
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System Workflow

Sample representation of the SOA method

Aggregate tweets
of each user

Target Profiles P
Vocabulary V

Target Profiles P

Female Male

" | “football”

“shopping” | ....

Female Male

“football”

Preprocessing - Remove Numbers
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Weighted SOAComplementary

¥ Use the complementary classes for each word-class relation — More
even amount of data for each class —+ Robust estimates and lesser
bias

¥ Weights inversely proportional to class frequency — Terms re-
lated with rare profiles, aggregate more weight — Prior knowledge will
help sparsely populated classes

- Second Order Attributes® - Model used in PAN'15

extracted \| features

Feature Concatenation

Train Results(4-fold CV)
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Support Vector Machine
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“Lopez-Monroy et al.: INAOE’s participation at PAN’13: Author Profiling task-
Notebook for PAN at CLEF 2013. In: CLEF 2013 Evaluation Labs and Workshop

Stylometric-Structural Features(PAN15’)

Profiling
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Finally, selected top 3000 frequent 3-grams of chars(age) and unigrams

Supported by:

Models

English

Spanish

Dutch

Age

Gender

Age

Gender

Gender

N-grams(PAN’15)
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N-grams + W-SOAC
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50.4
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Test Results

Language

Subtask

Accuracy%

Dutch

Gender

44.00

English

Age

30.46

Gender

53.45

Spanish

Age

29.69

Gender

60.94

Dutch

Gender

41.60

English

Age

59.13

Gender

69.23

Spanish

Age

32.14

Gender

67.86

Conclusions

v Stylometry and Discriminative features both capture gender informa-
tion well enough. Also boosted performance through fusion
v' Age considerably more difficult than gender to predict, across all lan-
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oguages and regardless of the methodology

v/ Diflerent performance in the two test datasets, highlight the added
difficulty of the cross-genre task

Grant Agreements No. FP7-610928




