

UniNE at CLEF 2016: Author Profiling

Mirco Kocher, Jacques Savoy

Task

Given a short set of tweets, predict an author's age and gender in a different genre.

Language	Goal	Genre Training	Genre Testing
Dutch	Gender	Twitter	Reviews
English	Gender, Age	Twitter	Blogs
Spanish	Gender, Age	Twitter	Blogs

- 5 age groups: 18-24, 25-34, 35-49, 50-64, and ≥ 65
- TIRA platform for evaluation
 - Encapsulated system with restricted data access
 - Fair comparison of the time needed to produce an answer
- Total 22 different participants

Strategy

• Select 200 most frequent terms from the query text

	Term	Q	•••	Ada	Alan	Ken	Tim	Vint	•••
<200	the	0.09		0.08	0.10	0.08	0.07	0.07	
	of	0.06		0.06	0.06	0.04	0.04	0.03	
	to	0.04		0.03	0.03	0.06	0.07	0.06	
	•	0.03		0.04	0.03	0.01	0.05	0.01	
	#tag	0.02		0.00	0.01	0.00	0.00	0.01	
	and	0.01		0.01	0.01	0.01	0.03	0.02	
	•••								

Number of samples in training set

- L₁-norm to select five nearest neighbors
 - $\Delta(Q,Ada)$: $0.05 \rightarrow 2^{\text{nd}}$ neighbor $0.03 \rightarrow 1^{st}$ neighbor • $\Delta(Q, Alan)$: $0.09 \rightarrow 3^{rd}$ neighbor • $\Delta(Q, Ken)$: $0.13 \rightarrow 5^{th}$ neighbor • $\Delta(Q,Tim)$: $0.11 \rightarrow 4^{th}$ neighbor • $\Delta(Q, Vint)$:
- Determine gender and age with majority voting
 - Select nearest if no unique majority exists

Rank	Gender	Age	
1 (Alan)	Male	35-49	
2 (Ada)	Female	35-49	
3 (Ken)	Male	≥65	
4 (Tim)	Male	50-64	
5 (Vint)	Male	≥65	

• Predict: Male 35-49

Results

Language	Joint	Gender	Age	Runtime
Dutch	0.5040	0.5040	_	00:02:27
English	0.2564	0.5769	0.4103	00:01:18
Spanish	0.1964	0.5357	0.3393	00:00:30

- Joint = accuracy of age and gender
- No age prediction in Dutch required
- Number of samples and text length is important
- Performance loss due to different genres
 - Gender accuracy drops by ~30%
 - Age prediction 50% less reliable

Evaluation

- Explanation of our proposed assignment (e.g. in English)
 - Usually, the relative frequency differences with very frequent words such as when, is, in, that, to, or it can explain the decision
- Difference in writing style
 - Female author tend to use more pronouns. Male authors seem to use more determiners and big words (more than 6 characters)
 - First person singular pronouns and full stops most common among young writers, but few first person plural pronouns and big words.
- Overall
 - Dutch gender prediction low for most participants

Conclusion

- Simple supervised approach can solve the profiling problem
- Reduced set of comprehensible features explains the decision
- No language dependent adjustments or parameter training
- Most frequent terms tend to select most discriminative features
- Difference in writing style exists independent of the genre

Acknowledgments

This research was supported, in part, by the NSF under Grant #200021_149665/1.