

Author Verification: Exploring a Large set of Parameters using a Genetic Algorithm

Erwan Moreau^{1,2}, Arun Jayapal^{1,2} and Carl Vogel²

¹ Centre for Next Generation Localisation (CNGL) ² School of Computer Science and Statistics, Trinity College Dublin, Ireland

Task

Given a set of documents written by author A and an unknown document, find whether the latter was written by A.

Output: probability in [0, 1]

- Evaluation: product of
- ► Area under the ROC curve (**AUC**),
- c@1 (accuracy with "don't know" answer)

Fine-grained strategy

Features

Consistency

- how constant in known documents?
- at least two known documents
- ▶ std. dev., min-max range
- Divergence
- how specific to the author?
- against a reference corpus
- mean/median diff., Bhattacharrya

Selected by the genetic algorithm

Observation types

- Few features selected (from 3 to 11)
- ► POS *n*-grams, words *n*-grams
- word length, TTR
- stop-words *n*-grams

Methods

Bhattacharrya (divergence measure)

- Find an optimal configuration:
- set of parameter/value pairs
- methods, features, thresholds...
- Regression model based on config
- SVM, decision trees (variants)
- optional: confidence estimation

Genetic learning

- vast space: about 10¹⁹ configurations
- maximize performance
- risk of overfitting

Uses a reference corpus

- assuming variability among authors
- using all documents in the dataset

Confidence

- how reliable?
- uses consistency and divergence

Distance

- compare known vs. unknown doc
- Cosine, Jaccard, normal distrib

Genetic algorithm

- Basic genetic learning
- Selecting configs as "breeders":
- rank the configs by their performance
- better perf = higher probability
- pick any two breeders as parents

Consistency unused in most cases

- Simple distance metrics (e.g. cosine)
- Decision tree regression
- Confidence estimation unused

Selection of the final models

Evaluation on the earlybird test set Hypothesis: robust strategy better if only one known document?

Robust strategy

- A simple distance measure
- Words tetragrams only
- Divergence based on Jaccard sim.:

 $J_1 = \frac{(p+q)}{(p+q+r)}$ $J_2 = \frac{(p+r)}{(p+q+r)}$

with *p* words in both *X* and *Y*, *q* words in *X* but not in Y, and r words in Y but not in X

Observation types

- ► *n*-grams
- tokens, characters, POS tags
- Combinations with skip-grams ► **e.g.** "<token> ___ <POS tag>"

crossover, mutation

variants: elitism, random

Avg. perf. by generation, main learning stage. Parameters: population, breeders prop.;

0.00-												
	DE	DR	ΕΈ	ΕN	ĠA	SA data	DE	DR	ΕΈ	ΕN	ĠA	SA

Dataset	Known docs	/case	Strategy	Perf. training	Perf. Earlybird	Perf. drop	Diff. average
Dutch occave	mean	1.79	robust	0.802	0.777	-0.025	+0.103
Duich essays	median	1	fine-g.	0.817	0.501	-0.316	-0.071
Dutch reviews	mean	1.02	robust	0.389	0.338	-0.051	+0.077
	median	1	fine-g.	0.608	0.253	-0.355	-0.111
English essays	mean	2.64	robust	0.292	0.265	-0.027	+0.101
	median	3	fine-g.	0.493	0.446	-0.047	+0.198
English novels	mean	1.00	robust	0.722	0.324	-0.398	-0.270
	median	1	fine-g.	0.860	0.370	-0.490	-0.245
Greek articles	mean	2.85	robust	0.359	0.246	-0.113	+0.015
	median	3	fine-g.	0.595	0.541	-0.054	+0.191
Spanich articlas	mean	5.00	robust	0.622	0.468	-0.154	-0.026
opanish articles	median	5	fine-g.	0.863	0.657	-0.206	+0.039
Correlation bo	oce by caso	robust	0.77				
COnciation De	UUS DY LASE	fine-g.	0.03				

Results

Datasot	Training set CV		Ea	rlybird test s	set	Final test set				
Dalasel	robust	fine-grained	robust	fine-grained	mixed	robust	fine-grained	final	rank	
Dutch essays	0.802	0.817	0.777	0.501	0.777	0.755	0.563	0.777	4	
Dutch reviews	0.389	0.608	0.338	0.253	0.338	0.375	0.350	0.375	3	
English essays	0.292	0.493	0.265	0.446	0.446	0.325	0.372	0.372	3	
English novels	0.722	0.860	0.324	0.370	0.324	0.313	0.352	0.313	8	
Greek articles	0.359	0.595	0.246	0.541	0.541	0.436	0.565	0.565	3	
Spanish articles	0.622	0.863	0.468	0.657	0.657	0.335	0.634	0.634	2	
Macro-average	0.531	0.706	0.403	0.461	0.514	0.423	0.473	0.502	3	
Micro-average								0.451	4	

stop-words *n*-grams n-grams, only most frequent words ▶ **e.g.** "the ____ is ___"

Token length classes ▶ e.g. 2-3, 3-4, 5-6, 6-7, 8-9, 10+

Token-Type Ratio

Thresholds: min. frequency in a document, min. proportion of documents which contain the observation (known docs, ref corpus)

mutation probability; elitism prop.; random prop.

Quick convergence in every case

Small population sufficient

More stable with larger population

14 000 to 28 000 configs evaluated

main training: 3-fold cross-validation

final stage (best subset): 20-fold CV

Hypothesis does not hold

Selecting strategy by dataset better

Acknowledgments

This research is supported by Science Foundation Ireland (Grant 12/CE/I2267) as part of the Centre for Next Generation Localisation (www.cngl.ie) funding at Trinity College, University of Dublin.

Computational Linguistics Group, School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland WWW: http://www.cngl.ie Mail: [moreaue|jayapala|vogel]@cs.tcd.ie