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Task

Given a set of documents written by
author A and an unknown document,
find whether the latter was written by A.

I Output: probability in [0,1]

I Evaluation: product of
I Area under the ROC curve (AUC),

I c@1 (accuracy with “don’t know” answer)

Fine-grained strategy

I Find an optimal configuration:
I set of parameter/value pairs

I methods, features, thresholds...

I Regression model based on config
I SVM, decision trees (variants)

I optional: confidence estimation

I Genetic learning
I vast space: about 1019 configurations

I maximize performance

I risk of overfitting

I Uses a reference corpus
I assuming variability among authors

I using all documents in the dataset

Robust strategy

I A simple distance measure

I Words tetragrams only

I Divergence based on Jaccard sim.:

J1 =
(p + q)

(p + q + r )
J2 =

(p + r )
(p + q + r )

with p words in both X and Y , q words in X but
not in Y , and r words in Y but not in X

Observation types

I n-grams
I tokens, characters, POS tags

I Combinations with skip-grams
I e.g. “<token> <POS tag>”

I stop-words n-grams
I n-grams, only most frequent words

I e.g. “the is ”

I Token length classes
I e.g. 2-3, 3-4, 5-6, 6-7, 8-9, 10+

I Token-Type Ratio

I Thresholds: min. frequency in a document,
min. proportion of documents which contain the
observation (known docs, ref corpus)

Features

I Consistency
I how constant in known documents?

I at least two known documents

I std. dev., min-max range

I Divergence
I how specific to the author?

I against a reference corpus

I mean/median diff., Bhattacharrya

I Confidence
I how reliable?

I uses consistency and divergence

I Distance
I compare known vs. unknown doc

I Cosine, Jaccard, normal distrib

Genetic algorithm

I Basic genetic learning

I Selecting configs as “breeders”:
I rank the configs by their performance

I better perf = higher probability

I pick any two breeders as parents

I crossover, mutation

I variants: elitism, random
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geneticParams
● 30:0.2:0.02:0.1:0.05

75:0.1:0.04:0.1:0.05

Avg. perf. by generation, main learning stage.
Parameters: population, breeders prop.;
mutation probability; elitism prop.; random prop.

I Quick convergence in every case

I Small population sufficient

I More stable with larger population

I 14 000 to 28 000 configs evaluated
I main training: 3-fold cross-validation

I final stage (best subset): 20-fold CV

Selected by the genetic algorithm

I Observation types
I Few features selected (from 3 to 11)

I POS n-grams, words n-grams

I word length, TTR

I stop-words n-grams

I Methods
I Bhattacharrya (divergence measure)

I Consistency unused in most cases

I Simple distance metrics (e.g. cosine)

I Decision tree regression

I Confidence estimation unused

Selection of the final models

I Evaluation on the earlybird test set
Hypothesis: robust strategy better if
only one known document?

finegrained robust

0.00

0.25

0.50

0.75

DE DR EE EN GA SA DE DR EE EN GA SA
dataset

va
lu

e testSet
trainCV
testEarlybird

Dataset Known docs/case Strategy Perf. training Perf. Earlybird Perf. drop Diff. average

Dutch essays
mean 1.79 robust 0.802 0.777 -0.025 +0.103
median 1 fine-g. 0.817 0.501 -0.316 -0.071

Dutch reviews
mean 1.02 robust 0.389 0.338 -0.051 +0.077
median 1 fine-g. 0.608 0.253 -0.355 -0.111

English essays
mean 2.64 robust 0.292 0.265 -0.027 +0.101
median 3 fine-g. 0.493 0.446 -0.047 +0.198

English novels
mean 1.00 robust 0.722 0.324 -0.398 -0.270
median 1 fine-g. 0.860 0.370 -0.490 -0.245

Greek articles
mean 2.85 robust 0.359 0.246 -0.113 +0.015
median 3 fine-g. 0.595 0.541 -0.054 +0.191

Spanish articles
mean 5.00 robust 0.622 0.468 -0.154 -0.026
median 5 fine-g. 0.863 0.657 -0.206 +0.039

Correlation between Diff. average and mean known docs by case
robust 0.77
fine-g. 0.03

Results

Dataset
Training set CV Earlybird test set Final test set

robust fine-grained robust fine-grained mixed robust fine-grained final rank
Dutch essays 0.802 0.817 0.777 0.501 0.777 0.755 0.563 0.777 4
Dutch reviews 0.389 0.608 0.338 0.253 0.338 0.375 0.350 0.375 3
English essays 0.292 0.493 0.265 0.446 0.446 0.325 0.372 0.372 3
English novels 0.722 0.860 0.324 0.370 0.324 0.313 0.352 0.313 8
Greek articles 0.359 0.595 0.246 0.541 0.541 0.436 0.565 0.565 3
Spanish articles 0.622 0.863 0.468 0.657 0.657 0.335 0.634 0.634 2
Macro-average 0.531 0.706 0.403 0.461 0.514 0.423 0.473 0.502 3
Micro-average 0.451 4

I Hypothesis does not hold

I Selecting strategy by dataset better
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