Topic models and n-gram language models for author profiling

Advanced Computing Research Centre

Adam Poulston, Mark Stevenson and Kalina Bontcheva Department of Computer Science, University of Sheffield

1. Task

- ► A set of Twitter users and their posts were provided.
- Set was divided into four languages: Italian, English, Dutch, Spanish.
- Each user's gender, age and personality were given.
- Task was to predict age, gender and personality of unseen users; given a single set of these known users.

2. Data and processing

Users were equally balanced by author gender. No guarantee of equal balance for other attributes, i.e. age had a marked imbalance.

5. Results

		Englich	Spanich	Italian	Dutch
		Linglish	Spanish	Italiali	Dutti
	Global Ranking	0.6743	0.6918	0.8061	0.6796
	Average RMSE	0.1725	0.1619	0.1378	0.1409
	Gender	0.6901	0.8409	0.7500	0.5000
Accuracy	Age	0.7394	0.5909	N/A	N/A
	Joint	0.5211	0.5455	N/A	N/A
	E	0.1381	0.1669	0.1279	0.1752
	Ν	0.2223	0.2285	0.1923	0.1511
RMSE	Α	0.1918	0.1398	0.1257	0.1444
	C	0.1749	0.1412	0.1187	0.1344
	0	0.1352	0.1329	0.1243	0.0993

- As authors may have different numbers of tweets. Up- (and down-) weighting of users was tested to avoid over-fitting to particular authors.
- Investigating effects of Hyperlinks was addressed in two ways:
 - Collecting domain of hyperlinks,
 - ▷ replacing hyperlinks with special token.
- ► The effect of shares and retweets were not considered in this approach.
- A single document representing each user was formed by aggregating their respective tweets.
- Each document was tokenized with a Twitter-aware tokenizer.

3. Feature extraction

- ► N-gram language model:
 - ▷ Word n–grams with n in the range 1–3 were extracted.
 - ▷ Weighted using TF-IDF (term frequency–inverse document frequency).
 - Character level n-grams were not considered.
- ► Topic model:
 - ▷ Topic models identify hidden themes in a document.
- LDA (Latent Dirichlet Allocation) was employed. This is a generative model in which documents are treated as a finite mixture of topics, such that each word in a document must be generated by one of its topics.
 A topic model trained on input data was used to label every topic as present or not present within each document.

Table 1: Results of final software submission including global rankings and individual attribute performance.

- Age, gender and their combination were scored using the accuracy metric for each of the four languages.
- Personality aspects (E=Extraversion, N=Neuroticism, A=Agreeableness, C=Conscientiousness and O=Openness) were scored with RMSE (root mean squared error). An average RMSE for each language is also provided.
- Global ranking is a combination of the joint (age, gender) accuracy and the average personality RMSE.
- These results show that n-grams and topic models are useful in developing multiple language compatible author profiling systems, as consistent results are achieved over the four languages.
- Manipulating hyperlinks was found to have no affect on system performance.
- Up- (and down-) weighting of users to avoid author over-fitting also had no affect on performance.

6. Further Work

Attempt to generate more robust topic models by training on a large external corpus.

4. Architecture

- Two feature sets—n–grams and topics—were combined to train Support Vector Machines with a linear kernel from package scikit-learn.
- Resulting model was then presented with previous unseen documents; performing judgements on the author attributes it was trained with.

- Assess effect of additional stylometric features such as readability.
- Investigate network and behavioural features for author profiling on social media.

References

- D.M. Blei, A.Y. Ng, M.I. Jordan (2003) Latent Dirichlet Allocation J. Mach. Learn. Res. (3) pp. 993–1022
- C. Manning, R. Prabhakar, H. Schutze (2008) Introduction to Information Retrieval, *Cambridge University Press*
- F. Pedregosa, et al. (2011) Scikit-learn: Machine Learning in Python J. Mach. Learn. Res. (12) pp. 2825–30
- F. Rangel, P. Rosso, M. Potthast, B. Stein, W. Daelemans (2015) Overview of the 3rd author profiling task at PAN 2015 in L. Cappellato, N. Ferro, J. Gareth, E. San Juan (Eds.) CLEF 2015 Labs and Workshops, Notebook Papers
- R. Řehůřek and P. Sojka (2010) Software Framework for Topic Modelling with Large Corpora *in* Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks *ELRA* pp. 45–50

Figure 1: Architecture of presented system.

Acknowledgments

This material is based upon work supported by the Air Force Office of Scientific Research, Air Force Material Command, USAF under Award No. FA9550-14-1-0333.

Contact: Adam Poulston

Email: arspoulston1@sheffield.ac.uk
Web: www.acrc.com

