

Dynamically Adjustable Approach through Obfuscation Type Recognition Miguel A. Sanchez-Perez, Alexander Gelbukh and Grigori Sidorov

Filtering

While exists a case P ("pivot") that overlaps with some other case
 (a) Denote Ψ(P) be the set of cases Q ≠ P overlapping with P
 (b) For each Q ∈ Ψ(P), compute the quality q_Q(P) and q_P(Q)
 (c) Find the maximum value among all obtained q_y(x)
 (d) Discard all cases in Ψ(P) ∪ {P} except the found x

where

 $q_{y}(x) = sim_{F_{src}^{x}}(O) + \left(1 - sim_{F_{src}^{x}}(O)\right) \times sim_{F_{src}^{x}}(N)$

Collection of documents

METHODOLOGY

Preprocessing

Sentence splitting, tokenizing, removal of tokens that do not start from a letter or digit, reducing to lowercase, stemming, joining small sentences (1-2 words) with the next one.

Seeding

<u>Vector representation of sentences:</u> TF-IDF, where sentences are "documents", thus called TF-ISF: inverse sentence freq. "Documents": union of sentences of both docs

Vector similarity:

Cosine similarity $\geq th1$ AND Dice similarity $\geq th2$

•••

cluster 4

Extension

Step 1: Clustering
Cluster by distance between sentences ≤ maxGap

Cluster by left side

RESULTS

Our approach compared to the PAN 2014 Official results

Team	PlagDet	Recall	Precision	Granularity	Runtime
Sanchez-Perez15	0.9010	0.8957	0.9125	1.0046	_
Sanchez-Perez14	0.8781	0.8790	0.8816	1.0034	00:25:35
Oberreuter	0.8693	0.8577	0.8859	1.0036	00:05:31
Palkovskii	0.8680	0.8263	0.9222	1.0058	01:10:04
Glinos	0.8593	0.7933	0.9625	1.0169	00:23:13
Shrestha	0.8440	0.8378	0.8590	1.0070	$69{:}51{:}15$
R. Torrejón	0.8295	0.7690	0.9042	1.0027	00:00:42
Gross	0.8264	0.7662	0.9327	1.0251	00:03:00
Kong	0.8216	0.8074	0.8400	1.0030	00:05:26
Abnar	0.6722	0.6116	0.7733	1.0224	$01{:}27{:}00$
Alvi	0.6595	0.5506	0.9337	1.0711	00:04:57
Baseline	0.4219	0.3422	0.9293	1.2747	00:30:30
Gillam	0.2830	0.1684	0.8863	1.0000	00:00:55

Sanchez-Perez15 approach evaluated in the PAN 2015 test corpus

Corpus	PlagDet	Recall	Precision	Granularity	Runtime
pan15_alvi	0.6554	0.8641	0.5279	1.0000	00:00:36
$pan15_cheema$	0.4780	0.8938	0.3262	1.0000	00:00:48
pan15_khoshnava	0.9355	0.9078	0.9649	1.0000	00:03:11
pan15_mohtaj	0.7537	0.7985	0.7136	1.0000	00:32:45

Step 2: Validation
for each cluster
if cos(left, right) ≤ th3 then
cluster again with maxGap - 1

Example:

After group left and right with *maxGap = 2*

Grouping with *maxGap = 1*

CONCLUSIONS

We improved the system proposed in PAN 2014 thanks to the following additions: 1. Verbatim detector module based on the longest common substrings algorithm. 2. Recursive clustering.

3. Parameters optimization

CONTACT

Miguel A. Sanchez-Perez masp1988@hotmail.com Centro de Investigación en Computación, Instituto Politécnico Nacional, http://www.cic.ipn.mx