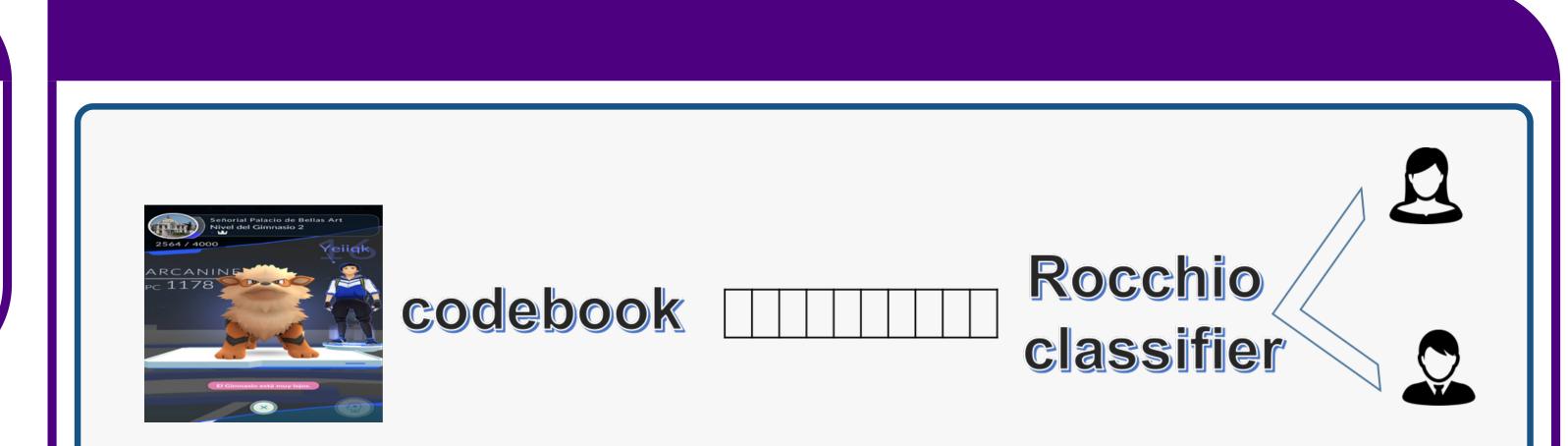


Gender Identification through Multi-modal Tweet Analysis using MicroTC and Bag of Visual Words

INGEOTEC participation in User Profiling Task@PAN18

http://github.com/INGEOTEC http://www.ingeotec.mx



Eric S. Tellez, Sabino Miranda-Jiménez, Daniela Moctezuma, Mario Graff, Vladimir Salgado, and José Ortiz-Bejar **CONACyT-INFOTEC-CentroGEO, México**

(entro(ieo

Introduction

This poster reports our participation in the multi-modal Author Profiling task of PAN'18. We use our μ TC tool to tackle the text sub-task, and a variant of Bag of Visual Words to deal with the user's visual content. Finally, our multi-modal approach use a convex combination of both textual and visual information.

Modeling Users

Text based Author Profiling

In general, we model each user as an array of her/his tweets. We use MicroTC to perform the text modelling of each user.

- MicroTC (μ TC) is our generic framework for text classification task, i.e., it works regardless of both domain and language aspects.
- The main idea behind μ TC is to select a competitive configuration from a vast universe of possible ones. Each configuration is composed of:

Text transformations

- * Hashtags, numbers, urls, user mentions, and emoticons (with three value options: remove, group, none).
- * Remove: diacritic, character duplication, punctuation, and case normalization (with two value options: activate or not-activate).

– Tokenizers

- * *n*-grams of words (n = 1, 2, 3)
- * q-grams of characters (q = 1, 3, 5, 7, 9)
- * Skip-grams: (2, 1), (2, 2), and (3, 1)

Results

User profiling results using MicroTC with text

ccuracy ma	cro-F1 mac	ro-Recall
0.8267 0.	8266).8385).8284).7943
	0.8378 0. 0.8267 0.	0.8378 0.8377 0 0.8267 0.8266 0

User profiling results using BoVW with images

The image-based profiling uses our Bag of Visual Words with 5000 centers and k = 7 (nearest centroids), with this configuration, our approach produced an accuracy of 0.5691, 0.5468, 0.5900 for Spanish, English, and Arabic languages, respectively.

centers=5000, ar 0.60 accuracy

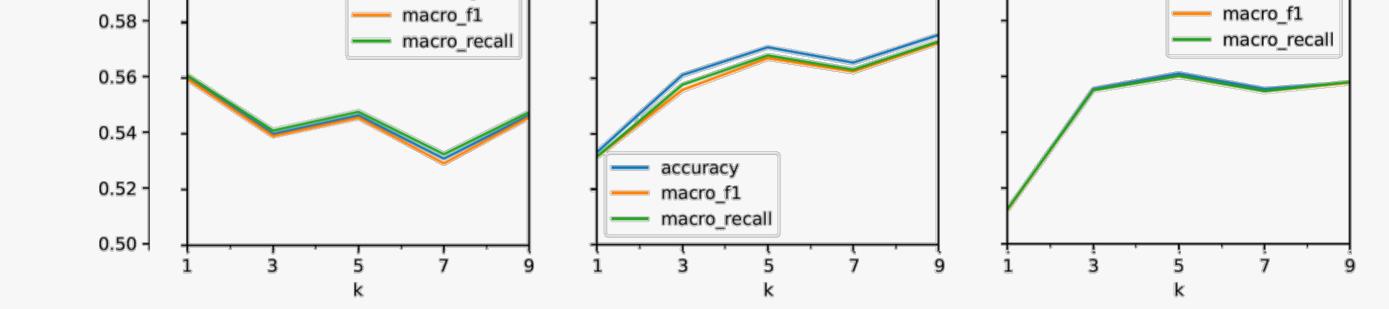
centers=5000, en

centers=5000, es

accuracy

Weighting schemes

- * Raw frequency
- * TFIDF
- * Entropy
- Finally, a Support Vector Machine is used as classifier.


This approach is a kind of **black box model**, but we are currently dealing with how to extract valuable information from the generated models.

You can download μ TC from our GitHub page: http://github.com/INGEOTEC/microTC.

Image based Author Profiling

In the image problem, we model each user as an array of her/his images to convert them to text.

- The image to text transformation has three main steps:
 - 1. We use DAISY [2] to compute an array of feature descriptors, for each image.

Results of the Text and Image Combination

dataset	lpha	accuracy	macro-F1	macro-Recall
Arabic	0.99	0.8400	0.8399	0.8408
English	0.95	0.8278	0.8278	0.8293
Spanish	0.925	0.8033	0.8033	0.8042

Conclusions

• We used our MicroTC (μ TC) framework [1] to deal with text content, and a variant of BoVW to deal with image content.

- 2. An efficient clustering algorithm is used to create a codebook.
- 3. The codebook is used to create a text representation of each image.

Finally, we perform text classification over the generated text using an algorithm inspired by Rocchio.

- Regarding text, a gross analysis shown that q-grams are among the highest weighted features; however, they are also among the lowest weighted tokens; that means, is not easy to understand why classifier choose to label an user as female or male.
- Regarding images, we observed that women tend to share selfies and images with text-content, while men share cartoons, humorous images, and landscape photos.

References

- Eric S. Tellez, Daniela Moctezuma, Sabino Miranda-JimÃl'nez, and Mario Graff. An automated text categorization framework based on hyperparameter optimization. *Knowledge-Based Systems*, 149:110 – 123, 2018.
- [2] E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and *Machine Intelligence*, 32(5):815–830, May 2010.