

A Textual Modus Operandi: Surrey's System for Author Identification Notebook for PAN at CLEF 2013

Anna Vartapetiance and Dr. Lee Gillam

{A.Vartapetiance, L.Gillam}@surrey.ac.uk

Q

I'm Feeling Lucky »

Introduction

If we simply let machines learn, will humans end up being deceived? What Google would suggest for an author of this particular phrase may not coincide with reality. Correct authorship attribution is but one part of our deception detection research.

what a tangled web we weave shakespeare

what a tangled web we weave shakespeare

Aims and Objectives

PAN2013 has an open class Traditional Authorship Attribution task. Given an "Unknown Document" and a (set of) "Known Document" from a single author (in three different languages of English, Greek and Spanish) identify:

Results and Evaluation

We conducted a parameter sweep that covered $\underline{6750}$ tests based on the values outlined below

Parameter	# of Optic	ons Options			
Language	3	English, Greek, Spanish			
Pattern Pairs	9	S1*S1, S1*S2, S1*S3, S2*S1, S2*S2, S2*S3, S3*S1			
		S3*S2, S3*S3			
Window Size	5	5, 10, 15, 20			
Filter	5	No filter, 2, 3, 4, 5			
Confidence Meas	ure 10	90, 91, 92, 93, 94, 95, 96, 97, 98, 99			
Parameters chosen for the final submission based on the highest scores where:					
Language	Pattern Pairs	Window Size Filter Confidence Measure			
English	S1*S2	20 4 92			

\mathcal{O})	L		2
a)	Ves-	- the same	author	

- a) Yes the same author
- b) No not the same author

Method

In PAN2012 [1], we used a frequency-mean-variance framework over patterns of stopwords [2] achieving f1 of 0.42 in the open class part of the test corpus with potential for f1 of 0.48 (post-submission analysis).

For PAN2013 [3] we are using cosine distances over this frequency-mean-variance framework.

Bag of wor	ds <u>N</u> gram	Part of Speech	SVM	Machine Learning
Stopwords	English	The Be To Of And	A In That Ha	ve I
	Greek	Και Το Να Τον Η Τ	Γης Με Που Τ	ην Από
	Spanish	De La Que El En Y	A Los Del Se	
Notations				
Symbol	Meaning			
Q	Set of Queries			
q	A single query w	here $q \in Q$		
D	Set of documents			
d	A document when	re $\{d_{01}, d_{02}, \dots, d_N\} \in D$		
D_q	Set of documents	D related to query q		
L	Set of languages			
SW	A Stopword			
S_L	Set of stopwords	$(sw_{L,1}, sw_{L,2} \dots sw_{L,H})$ f	or a language L	
S_a, S_b	Subsets of S_L , where	ere		
		$\int S_1 = \{S_1 \in S_1 \}$	$S_i \mid 1 \le i \le \left\lceil \frac{1}{2} \right\rceil$	$length_{(S_L)}$ }
	$S_a = S_b \in (S_1 S)$	$S_2 S_3) \Rightarrow \left\{ S_2 = \{S_j \lfloor 1/2 \rfloor \right\}$	$length_{(S_L)} + 1$	$\leq j \leq length_{(S_L)}$
MAC	Window Giro, m	L L	$S_3 = S_L$	
WS WS (VV)	Dettern of story	S_a	V_b , where W_b	e IN avinum distance of
ΓΓ (Λ, Ι)	Window Size WS	S a lonowed by		aximum distance of
FT	Filter: threshold f	for frequency of each patt	ern, where $FT \in$	\mathbb{N}
СМ	Confidence Meas	ure: threshold for identify	ving confidence i	n similarity of Q with D,
	where $CM \in \{1,2\}$	2,3,,99,100}	0	
FMV	Function that take	es the incidents of given p	attern PP ^{ws} (X,	Y) and returns three values
	of frequency, me	an, and variance		
CosineSim	Cosine Similariti	es function [5] where cos	$(A \cdot B) = \frac{A \cdot B}{ A B }$	

Greek	S3*S3	10	5	98
Spanish	S1*S2	10	4	92

Table below shows the results from different experiments on Train and Test datasets[Note: The test data has not yet been released, hence, surprising decline in the final results for Spanish language can not yet been explained]

Version	E	G	S	Е%	G%	S%	Overall	Corr doc	F1
Train 1	6	12	5	60	60	100	73.3	23	0.657
Test- Early Bird				45	50	90	61.6		0.56
Train 2	8	13	5	80	65	100	81.6	26	0.742
Test- Final Sub				50	53	60	53.3		0.541
Train- Post sub	8	15	5	80	75	100	85	28	0.777

Conclusion

Our frequency-mean-variance framework over pairs of stopwords (no more than ten) can demonstrate reasonable performance (f1 of 0.74 on training corpus). Post-submission experiments improve slightly (0.78) by considering the number of known files an unknown documents is compared to (e.g. more or less that 5)

Defining the Approach

Our process of Authorship Attribution can be explained as:

- 1. For all the $q \in Q$, calculate the FMV with pair of X from Pattern set S_a followed by Y from Pattern set S_b within window size of WS; only if pattern has happened more than FT times
- 2. Only for Patterns that happened more that FT times for q, for related D_q calculate the FMV with pair of X from Pattern set S_a followed by Y from Pattern set S_b within window size of WS if that pattern has happened more than FT times too
- 3. Find maximum of Cosine similarities (MaxCosineSim) between each of the patterns for q and related D_q
- 4. Calculate average of non-zero *MaxCosineSim* values
- 5. Answer "Match" if that value is bigger than Confidence Measure CM, else answer "No Match"

Algorithm

for all q do

```
for all X \leftarrow 1 to length S_a and all Y \leftarrow 1 to length S_b do

Sum_q(X, Y) = 0

for ws \leftarrow 0 to WS do
```

Authors' Unique Pattern in Using Stopwords

	There, flinging discretion to the chilly wind (in a most un-Matthewlike way), he had proposed, on one knee, in front Of three down-and-out
The	huddled on <mark>the</mark> steps, sharing what looked like <mark>a</mark> bottle <mark>Of</mark> meths. It had been, <mark>in</mark> Robin's view, <mark>the</mark> most perfect proposal, ever, <mark>in</mark> the history
Cuckoo's	of matrimony. He had even had a ring in his pocket, which she was now wearing; a sapphire with two diamonds, it fitted perfectly, and all the
calling	way into town she kept staring at it on her hand as it rested on her lap. She and Matthew had a story to tell now, a funny family story, the kind
calling	you told your children, <mark>in</mark> which his planning (she loved <mark>that</mark> he had planned it) went awry, <mark>and</mark> turned into something spontaneous.

He had endured a thumping headache formost of the weekend and was struggling to make a deadline for the local newspaper. However, his wifeThe
had been a little stiff and uncommunicative over lunch, and
Casual
NacancyBany deduced that
had been writing about Krystal, whom Mary disliked, although she pretended otherwise.
Mary had softened and smiled, so Bany had telephoned the
golf club, because it was nearby and
they were sure of getting a table. He tried to give
his wife pleasure in little ways, because he had come to realize, after nearly two decades together, how often he disappointed her in the big things.

Angels and Demons After passing through endless security checks and being issued a six-hour, holographic guest pass, he was escorted to a plush research facility where he was toldhe would spend the afternoon providing "blind support" to the Cryptography Division; an elite group of mathematical brainiacs known as the code-breakers. For the first hour, the cryptographers seemed unaware Becker was even there. They hovered around an enormous table and spoke a language Becker had never heard. They spoke of stream ciphers, self-decimated generators, knapsack variants, zero knowledge protocols, unicity points. Becker observed, lost. They scrawled symbols on graph paper, pored over computer printouts, and continuously referred to the jumble of text on the overhead projector. Another dumb foul and Kyle yelled at the referee to just let it slide. He sat down and ran his finger over the side of his neck, then flicked off the

The perspiration. It was early February, and the gym was, as always, quite chilly. Why was he sweating? The agent/cop hadn't moved an inch; in fact he seemed to enjoy staring at Kyle. The decrepit old hom finally squawked. The game was mercifully over. One team cheered, and one team really didn't care. Both lined up for the obligatory high fives and "Good game, good game," as meaningless to twelve-year-olds as it is to college players. As Kyle congratulated the opposing coach, he glanced down the court. The white man was gone. What were the odds he was waiting outside?

Cosine Similarity based on Patterns of Stopwords

```
if PP_q^{WS}(X,Y) then
                                     Count_a [ws](X,Y) += 1
                                     Sum_a(X,Y) += 1
                  if Sum_a(X, Y) \ge FT then
                           FMV_q(X,Y) \leftarrow FMV_q(Count_q[ws](X,Y))
                           for all D_a do
                                     Sum'_d(X,Y) = 0
                                     for ws \leftarrow 0 to WS do
                                              if PP_d^{WS}(X,Y) then
                                                       Count'_d[ws](X,Y) += 1
                                                       Sum'_d(X,Y) += 1
                                     if Sum'_d(X,Y) \ge FT then
                                              FMV_d(X,Y) \leftarrow FMV_d(Count'_d[ws](X,Y))
                                              CosineSim_a(X,Y) \leftarrow
                                              CosineSim_{q, D_q}(FMV_q(X, Y), FMV_{D_q}(X, Y))
                               MaxCosineSim_{a}(X,Y) \leftarrow Max(CosineSim_{a}(X,Y))
         if MaxCosineSim_a(X,Y) \neq 0 then
                  RES_a \leftarrow AVG (MaxCosineSim_a(X,Y))
if RES_a \ge CM return
          "Match"
else return
         "No Match"
```

Unknown	Author	Books in the Corpus	Cosine Value
The Cuckoo's Calling	J.K. Rowling Dan Brown John Grisham	The Sorcerer's Stone, The Chamber of Secrets, The Prisoner of Azkaban, The Goblet of Fire, The Deathly Hallows, The Casual Vacancy Digital Fortress, Inferno, Angles and Demons The Appeal, The Innocent Man, The Associate, Bleachers, A Painted House, The Broker	99.92 99.54 99.43

References

[1] Vartapetiance, A., Gillam, L.: Quite simple approaches for authorship attribution, intrinsic plagiarism detection and sexual predator identification - notebook for pan at clef 2012. In: Forner, P., Karlgren, J., Womser-Hacker, C. (eds.): CLEF 2012 Evaluation Labs and Workshop - Working Notes Papers. Rome, Italy (2012)

[2] Church, K., Hanks, P.: Word Association Norms, Mutual Information and Lexicography. Computational Linguistics, vol. 16(1), pp. 22-29 (1991)

[3] Vartapetiance, A., Gillam, L.:A Textual Modus Operandi: Surrey's System for Author Identification - notebook for pan at clef 2013. In: P. Forner, R. Navigli, and D. Tufis (eds). CLEF 2013 Evaluation Labs and Workshop –Working Notes Papers, Valencia, Spain (2013)

Acknowledgments

The authors gratefully acknowledge prior from EPSRC/JISC (EP/I034408/1), the UK's Technology Strategy Board (TSB, 169201), and also the efforts of the PAN13 organizers in crafting and managing the tasks.