Adverse Drug Extraction in Twitter Data using Convolutional Neural Network

Liliya Akhtyamova, John Cardiff, Mikhail Alexandrov

ITT Dublin Autonomous University of Barcelona

TIR Workshop 2017

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Motivation

• Adverse Drug Reactions (ADR) ? unintended responses to a drug when it is used at recommended dosage levels

• Side effects of medicines lead to 300 thousand deaths per year¹ in the USA and Europe

• Patients are not reporting side effects adequately through official channels

¹Businaro R., Why We Need an Efficient and Careful Pharmacovigilance? Journal of pharmacovigilance, 2013

Patients are actively involved in sharing and posting health-related information in various **healthcare social networks**:

- a large source of recent data from all over the world
- diverse information about the majority of drugs
- broad distribution of patients

Thus, can use this data to estimate ADRs

- ▷ Tremendous task to be performed manually
- \triangleright Need an automated way of doing this

Processing of Drug-Related Posts on Twitter

The following **challenges** occur:

- 1. short posts formats
- 2. complexity of human language
- 3. unbalanced structure of data

In this work, we try to solve them by proposing:

 \triangleright a CNN-based method for ADR classification

4/16

ADR Classification Dataset

(3)

3

Dataset:

- dataset obtained from the PSB 2016 Social Media Shared Task for ADR classification (Task 1)^2 $\,$
- 7,574 instances (about 10% are positive)
- information about over 100 drugs

Additional data source:

dataset for sentiment analysis classification task from Semeval-2015³

6/16

²http://diego.asu.edu/psb2016/task1data.html

³http://alt.qcri.org/semeval2015

A Large-Scale CNN Ensemble

Frequent misspellings: "Baek suddenly losing his glow :(nd im losing my abilify to speak"; "adderal reeeeeallIIIIIIy helped my depression but I had terrible s/e's :(Do you have Hypothyroidism?"

Confused sentiment: "I loved effexor for anxiety and depression but it raised my blood pressure too much so I had to stop"

Drug abuse: "Sertraline Buspirone Lexapro and Abilify really messed up. I felt like Theon Greyjoy :("

Drug-drug interaction: "I'm in pain. I mixed my antibiotics with my lexapro, and now I feel like I have the flu. :("

Overall experience: "apparently itching/rash can be a side effect of wellbutrin that doesn't show up for a while after u start taking it? This is fine:("; "copaxone injections in the next week or so, got my health insurance sorted thankfully. Kinda nervous about the side effects"

Other bad sentiment: "not sure id be so brave with the heights! I'm not bad, struggling with appetite, pain and bloating :(may have to dbl humira."; "okay I only have 2 pain pills left :(no more lexapro , my knee hurts . :/"

≣ ৩৭ে 7/16

Method

A Large-Scale CNN Ensemble

P

8/16

æ

Problem Formulation

• Given an input text post T, the goal is to predict whether it mentions ADR or not R_T

• A CNN \mathbf{F}_W parameterized by weights W is used to learn a decision function

• Given the training set $\{T_i, R_{T_i}\}_{i=1}^N$ consisting of N post-rating pairs, the CNN is trained to minimize cross-entropy loss function

э

- Input: post **T** treated as an ordered sequence of words $\mathbf{T} = \{w_1, w_2, ..., w_N\}$
- Plain words are mapped to their vector representations using *word2vec*: $w_i \rightarrow \mathbf{w_i}$
- ... and stacked together into a sentence matrix $M_{T} = \begin{bmatrix} w_{1}, w_{2}, ..., w_{N} \end{bmatrix}$
- $\rightarrow~\mathsf{Matrix}~\mathbf{M_T} \in \mathbb{R}^{D \times N}$ is used as an input data for our CNNs
 - Additionally pretrained GoogleNews⁴ and Wikipedia⁵ word embeddings were used

⁵https://fasttext.cc/docs/en/english-vectors.html

A Large-Scale CNN Ensemble

10/16

⁴https://code.google.com/archive/p/word2vec/

General CNN Architecture

- 1. convolutional layer: 300 filters of size $5 \times D$
- 2. max-pooling layer
- 3. two fully-connected layers: 1024 and 256 neurons

Regularization: *l*₂-norm and *dropout*

э

< /i>

Experiments

-

→ < Ξ → <</p>

æ

Technical Details

Word embeddings:

- context window size of 5 .
- words with frequency less than 5 are filtered
- dimensionality D of word embeddings 300

Convolutional Neural Networks:

- trained for 20K iterations
- learning rate 5e-4
- I2-regularization set to 0.01, dropout rate 0.2

3

• Bag-of-words model - takes into account the multiplicity of the appearing words

 $\begin{array}{l} \mbox{text} \rightarrow \mbox{a vector with values indicating the number of} \\ \mbox{occurrences of each vocabulary word in the text} \\ \mbox{classification} \rightarrow \mbox{Logistic Regression or Random Forest (500 trees)} \end{array}$

 Single CNN – with own and pretrained word embeddings; with additional data source – sentiment data and without

э.

イロト イポト イヨト イヨト

Classification performances over the original and augmented data sets

Training data	Method	ADR F-score, %	Non-ADR F score, %	Accuracy, %
Huynh et al.	CNN+glove	0.51	-	-
original	bow+logistic regression	0.367	0.851	71.0
	CNN+word2vec	0.324	0.732	61.6
	CNN+word2vec(+2.5m)	0.426	0.892	81.6
	CNN+word2vec(+0.2m)	0.483	0.936	88.6
	CNN+GoogleNews	0.542	0.946	90.4
	CNN+Wikipedia	0.540	0.942	90.2
original +0.2m	CNN+word2vec	0.301	0.687	56.7
	CNN+word2vec(+2.5m)	0.373	0.914	87.5
	CNN+word2vec(+0.2m)	0.465	0.934	88.2

3

Discussion

Summary:

- end-to-end solution that is based on a CNN with pretrained GoogleNews word embeddings
- ability to handle with imbalanced structure of data
- computational experiments, demonstrating a strong advantage of the proposed solution over the standard approaches

Future Work:

- more intricate preprocessing
- building a committee of different models (e.g. ensemble, bagging or boosting)
- augmentation of the existing dataset with data from other healthcare networks (forums, specialized medical websites)

.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・