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Introduction

Plagiarise

To robe credit of another person’s work; in text it means
including text fragments from an author without giving him the
corresponding credit
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Introduction

Plagiarise

To robe credit of another person’s work; in text it means
including text fragments from an author without giving him the
corresponding credit

In this work we describe our first attempt to detect plagiarised
fragments in a text employing statistical Language Models
(LMs) and perplexity.
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Introduction

1 Intrinsic plagiarism analysis
[Meyer zu Eissen and Stein, 2006, 2007]

• No reference corpus is exploited
• Idea: Search for variations (syntax, grammatical categories

or text complexity) through the suspicious text
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Introduction

1 Intrinsic plagiarism analysis
[Meyer zu Eissen and Stein, 2006, 2007]

• No reference corpus is exploited
• Idea: Search for variations (syntax, grammatical categories

or text complexity) through the suspicious text

2 Plagiarism analysis with reference
[Si et al., 1997, Iyer and Singh, 2005]

• A reference corpus of original documents is needed
• Idea: to compare fragments from the suspicious document

with the original documents in the reference corpus
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Introduction

We are interested in the second approach but...

Usually The reference corpus is conformed by original
documents
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Introduction

We are interested in the second approach but...

Here The reference corpus is conformed by texts written
by the author of the suspicious document
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Introduction

Statistical Language Model (LM )

A LM “tries to predict a word given the previous words”
[Manning and Schutze, 2000].

Ideal calculation:

P (W ) = P (w1) · P (w2|w1) · P (w3|w1w2) · · ·P (wn|w1 · · ·wn−1)
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Introduction

Statistical Language Model (LM )

A LM “tries to predict a word given the previous words”
[Manning and Schutze, 2000].

Ideal calculation:

P (W ) = P (w1) · P (w2|w1) · P (w3|w1w2) · · ·P (wn|w1 · · ·wn−1)

n-grams approach (case n = 3)

P3(W ) = P (wn−2) · P (wn−1|wn−2) · P (wn|wn−2wn−1)
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LM approach

Basic idea

• Computing the probability of n-grams in a corpus of texts
from one author (representation of vocabulary, grammatical
frequency and writing style)

• These representations can be compared to other texts in
order to look for candidates to plagiarism
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LM approach

Is a fragment f a plagiarism candidate?
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LM approach

Is a fragment f a plagiarism candidate?

• Determine if a text is similar to another one based on
perplexity, frequently used in order to evaluate how good a
LM describes a language: “our author language“

PP2 = N

√

N
∏

i=1

1
P (wi|wi−1)

• The lower a text perplexity is, the more predictable its
words are. In other words, the higher a perplexity is, the
bigger the uncertainty about the following word in a
sentence

LM for plagiarism detection PAN’08, Patras Greece 9/20



LM approach

Hypothesis Given a LM m calculated over texts T written by
author A. The perplexity of fragments g, h ∈ T ′,
given that g has been written by A and h has been
”plagiarised” from an author B will be clearly
different.
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LM approach

Hypothesis Given a LM m calculated over texts T written by
author A. The perplexity of fragments g, h ∈ T ′,
given that g has been written by A and h has been
”plagiarised” from an author B will be clearly
different.

Specifically, PPm(g) ≪ PPm(h)
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Experiments: corpus

We have carried out experiments over two different kind of
texts:

Specialised Corpus about Lexicography topics written by only
one author

Literature A set of books written by Lewis Carroll and some
passages from William Shakespeare texts
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Experiments: corpus

Corpora preprocessing:

vocabulary and morphosyntactic
syntactic richness style

i original text �

ii part-of-speech �

iii stemmed text �
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Experiments: corpus

Training partition has been used for the LMs calculation

Test partition contains randomly inserted fragments written by a
different author
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Experiments: corpus

Training partition has been used for the LMs calculation

Test partition contains randomly inserted fragments written by a
different author

In order to identify candidates, we calculate the perplexity of
each sentence with respect to the LM associated to the author
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Experiments: results

Results over the literature corpus

Considering the original text:

 7640

 7258

 6876

 6494

 6112

 5730

 5348

 4966

 4584

 4202

 3820

 3438

 3056

 2674

 2292

 1910

 1528

 1146

 764

 382

 0
 950 855 760 665 570 475 380 285 190 95 0

P
er

pl
ex

ity

Sentence

 Literature example, n=3 
plagiarised

µ=319

LM for plagiarism detection PAN’08, Patras Greece 14/20



Experiments: results

Results over the literature corpus

Considering the stemming of the text:
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Experiments: results

Results over the literature corpus

Considering the POS of the text:

 26
 25
 24
 23
 22
 21
 20
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10

 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 950 855 760 665 570 475 380 285 190 95 0

P
er

pl
ex

ity

Sentence

 Literature example, n=3 
plagiarised

µ=9

LM for plagiarism detection PAN’08, Patras Greece 16/20



Discussion

This approach considers three of the five stylometric features
categories useful for the plagiarism detection task
[Meyer zu Eissen and Stein, 2006]:

Original and Syntactic features (writing style)
stemmed

Special words counting (vocabulary richness)

POS Part-of-speech classes quantifycation

Not considered Text statistics (character level)
Structural features
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Discussion

Perplexity (as we applied it) is not enough to discriminate
plagiarised from ”legal” fragments but...
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Discussion

Perplexity (as we applied it) is not enough to discriminate
plagiarised from ”legal” fragments but...

Is a good idea to consider it?

What about original text, POS and stem versions?
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Conclusions

1 We have considered perplexity on three different levels:
word, part-of-speech and stem.

2 Unfortunately, there are non-plagiarised fragments that
present high perplexity. However, plagiarised fragments
seem to stand out in the highest positions when we
consider these features.

3 We know that the perplexity feature space of plagiarised
and non-plagiarised segments is not completely separable,
but we believe that including perplexity among other
features may improve the results.
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