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Introduction

Once upon a time...

03/05/09
A group of mathematicians from the Universities of Bologna and Rome
La Sapienza gets to know of the Plagiarism Competition and decides
to try some preliminary experiments on the external plagiarism corpus
using methods developed for different tasks, like authorship
recognition and text categorization.
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A group of mathematicians from the Universities of Bologna and Rome
La Sapienza gets to know of the Plagiarism Competition and decides
to try some preliminary experiments on the external plagiarism corpus
using methods developed for different tasks, like authorship
recognition and text categorization.

The competition deadline: 07/06/09 - just one month...
...and a few documents: “just” 14,428!

Therefore, two imperatives:

1 be (not only computationally) fast

2 use heuristics
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Introduction

Where do we come from?

Various problems of classification and clustering of symbolic
sequences (authorship attribution, classification of biological or genetic
sequences, ...)
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Where do we come from?

Various problems of classification and clustering of symbolic
sequences (authorship attribution, classification of biological or genetic
sequences, ...)

The Gramsci Project

C. Basile, D. Benedetto, E. Caglioti, M. Degli Esposti
An example of mathematical authorship attribution
Journal of Mathematical Physics 49, 125211 (2008).
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sequences, ...)

faced using ideas coming from Information Theory, Dynamical
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and usually defining some similarity metric(s) to estimate the
“distance” between couples of sequences.

Given two texts x, y their n-gram distance is:

dn(x, y) :=
1

|Dn(x)| + |Dn(y)|

X

ω∈Dn(x)∪Dn(y)

„

fx (ω) − fy (ω)

fx (ω) + fy (ω)

«2

where:
◮ fx (ω) = frequency of the (character) n−gram ω in x ;
◮ Dn(x) = set of all the n−grams with non-zero frequency in x .
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Introduction

Corpus statistics
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Our method

1 - Selection

First of all: reduce the search space by selecting a small number of
suitable candidates for plagiarism for each plagiarized text.
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First of all: reduce the search space by selecting a small number of
suitable candidates for plagiarism for each plagiarized text.

Can we use the n−gram distance for this task?

Maybe, but there is not enough statistics using the “normal” alphabet
+ it takes too long ⇒ reduce the alphabet!

We converted all texts into word lengths (up to 9):

To be or not to be: that is the question → 2223224238

The value n = 8 was chosen as a compromise between
◮ acceptable computational time (2.3 days for the whole corpus)
◮ a good recall (81% of the plagiarized characters come from the

first 10 neighbours → very good! 13% of translated plagiarism...)
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Our method

2 - Matches

Now we can perform a detailed analysis on the 7214 x 10 couples of
texts, looking for common subsequences (matches) longer then a fixed
threshold (e.g. 15 characters).
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2 - Matches

Now we can perform a detailed analysis on the 7214 x 10 couples of
texts, looking for common subsequences (matches) longer then a fixed
threshold (e.g. 15 characters).

A new conversion: T9 encoding.

Why T9?
◮ “almost unique” translation for long enough sequences (10-15

characters);
◮ it reduces the alphabet to 10 symbols ⇒ speeds up the indexing

phase of the matching algorithm. more...

Computation times for the whole corpus: 40 hours.
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Our method

2 - Matches (continued)
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Our method
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Our method

3-“Squares”

How to identify the “squares” which are so evident in this picture?
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We need scalability!
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distance in the suspicious file is not larger than the length of the
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Chiara Basile (University of Bologna) Plagiarism detection in three steps San Sebastián, 10/09/2009 8 / 12



Our method

3-“Squares”

How to identify the “squares” which are so evident in this picture?

50 000 100 000 150 000 200 000 250 000
0

20 000

40 000

60 000

80 000

100 000

120 000

140 000
suspicious-document00814.txt vs. source-document04005.txt

We need scalability!

Join two matches if the following conditions hold simultaneously:
1 matches are subsequent in the suspicious file
2 matches are not superimposed in the suspicious file and their

distance in the suspicious file is not larger than the length of the
longest of the two sequences, scaled by δx

3 the same as 2 (with possibly a different δy ) in the source file

Chiara Basile (University of Bologna) Plagiarism detection in three steps San Sebastián, 10/09/2009 8 / 12



Our method

3-“Squares”

How to identify the “squares” which are so evident in this picture?

50 000 100 000 150 000 200 000 250 000
0

20 000

40 000

60 000

80 000

100 000

120 000

140 000
suspicious-document00814.txt vs. source-document04005.txt

We need scalability!
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We need scalability!

Join two matches if the following conditions hold simultaneously:
1 matches are subsequent in the suspicious file
2 matches are not superimposed in the suspicious file and their

distance in the suspicious file is not larger than the length of the
longest of the two sequences, scaled by δx

3 the same as 2 (with possibly a different δy ) in the source file

Then: repeatedly merge superimposed segments
+ run the algorithm above again with smaller parameters δ′x and δ′y .
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Our method

Summary of the procedure

1 - Selection

2 - Matches

3 - “Squares”
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The Constance letters of
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Our method

Summary of the procedure

1 - Selection

The Constance letters of
Charles Chapin, edited by
Eleanor Early and
Constance...

−→ 397276627539...

� by the 8-gram distance �

suspicious-document00814

{

1) source-document04005
2) source-document04080
3) source-document02123
4) source-document02648
5) source-document03464
6) source-document02737
7) source-document03876
8) source-document05012
9) source-document04456
10) source-document04223
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Our method

Summary of the procedure
1 - Selection

2 - Matches

The Constance letters of
Charles Chapin, edited by
Eleanor Early and
Constance...

−→

8430266782623053883770
6302427537024274610
334833029035326670327590
2630266782623...
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Our method
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2 - Matches

3 - “Squares”
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1496 matches → 244 pieces→ 16 passages → 8 suspected plagiarisms
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Our method

Summary of the procedure
1 - Selection
2 - Matches

3 - “Squares”
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Comparison with the associated xml file... ok!
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Conclusions

Results and conclusions

Results on the competition corpus, with δx = δy = 3, δ′x = δ′y = 0.5:
◮ Precision: 0.6727
◮ Recall: 0.6272
◮ F-measure: 0.6491
◮ Granularity: 1.0745
◮ Overall score: 0.6041
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Maybe they can be used to control precision, recall and granularity
according to the task...

◮ there are certainly better ideas for the selection phase...
◮ try other/standard clustering algorithms

And... what about the internal plagiarism problem?
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Conclusions

To conclude

Thank you!
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Total cost: M + N for each couple suspicious-source. back
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