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Overview of Author Profiling

Overview of Author Profiling

Author Profiling — attributing an author of a text to a certain sociodemographic class

Real world applications:

» suspect profiling in forensics

» customer-base analysis

» targeted advertising

Cross-genre author profiling:

» adaptable to any unseen genre

» label only genres that are easier to label

» merge all existing genres into one training set to overcome data scarcity

Ivan Bilan and Desislava Zhekova

11.09.2016

#3




LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

CAPS:

LMU

A Cross-genre Author Profiling System

Training Dataset

Training Dataset

PAN16 Training Set (Authors)

PAN16 Training Set (Text samples)

500 432 250000
400 ., 200000
(<5}
£ 300 249 £ 150000 ~128000
E= &
100 = 50000 -
0 0
English Spanish Dutch English Spanish Dutch
Language Language

» Labelled with gender: Male Female i

» Aqgegroups: 18-24 25-34 35-49 50-64 65-xx

»
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Atrtificially increase the number of samples by
labeling each text sample

During evaluation take the most frequent
prediction (or the one with the highest confidence
score) for the author
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Software Tools

» Python

¥

scikit-learn (main machine learning toolkit)

Y

gensim (topic modelling)

¥

matplotlib (visualization)

» TreeTagger (available at http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/)

» supports part-of-speech tagging, lemmatization, stemming and chunking
» works on multiple languages
» has wrappers for various programming languages

» freely available for research and education
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Machine Learning Pipeline

Text Samples

~~

[ Preprocessing ]

[ Lemmatized Text ]<:[ Cleaned Text ]:> [ POS Tags ]

[ Lemma n-grams (TF-IDF) ] Categorical Tag n-grams
character n-grams (TF-1DF)
[ Topic Modeling ] (TF-IDF)

[ Feature Selection with x? test ]

Custom Features Custom Features Custom Features
(Lemmas) (Cleaned Text) (POS-based)

Training Labels $ Classification Model

v

Test Labels

N S

Ivan Bilan and Desislava Zhekova

11.09.2016

#6




LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

CAPS:
A Cross-genre Author Profiling System

Machine Learning Pipeline

Machine Learning Pipeline

Preprocessing
» HTML and Bulletin Board Code removal

» normalization of all links to [URL]
» normalization of all usernames e.g. @username to [USER]

» duplicate sample removal

Text representations

» first experimented with stemmed text representation

» final system uses lemma and part-of-speech representation

Ivan Bilan and Desislava Zhekova

» the results are saved in a dataframe and each feature accesses the text representation it requires
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Machine Learning Pipeline

TF-IDF - The Term Frequency-Inverse Document Frequency
» Emphasize important words (frequent in a text, infrequent in the corpus)

Usage in CAPS:

» unigrams, bigrams, trigrams for lemmatized text
» 1-4 grams for POS text representation
» 3-grams for characters

Topic Modelling with Latent Dirichlet Allocation (LDA)

and Hierarchical Dirichlet Process (HDP)
» Generative statistical model that allows automated grouping of observed words into topics
» LDA requires predefined number of topics
» HDP calculates the number of topics automatically
» do not confuse with linear discriminant analysis (also known as LDA)

Usage in CAPS:
» we used LDA with 100 topics
» HDP showed decreased performance
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Custom Features

» Over 40 custom features divided into the following feature clusters:

>

v

Dictionary-based Features

POS-Based Features

)

v

» Text Structure Features

v

)

v

Stylistic Features
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Custom Features

Dictionary-based Features

Feature Cluster

Examples per Language

Dictionary-based

Feature Name

English

Spanish

Dutch

Connective Words

furthermore, firstly ...

pues, como ...

zoals, mits ...

Emotion Words

sad, bored, angry ...

espanto, carino, calma ...

boos, moe, zielig ...

Contractions

Id, let’s, I'll ...

al, del, desto ...

mn, t, zo'n ...

Familial Words

wife, husband, gf ...

esposa, esposo ...

vriendin, man ...

Collocations

dodgy, awesome, troll ...

no manches, chido ... buffelen, geil ...
Abbreviations and Acronyms a.m., Inc., asap ... art., arch. ... gesch., geb. ...
Stop Words did, we, ours ... de, en, que ... van, dat, die ...
» positive / negative sentiment lists are not used
Ivan Bilan and Desislava Zhekova 11.09.2016 #10
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POS-Based Features
» Use of Verbs, Interjections, Adjectives, Determiner, Conjunction, Plural Nouns
» Lexical Measure — tell how implicit or explicit the text is

F=05 (((nouns + adjectives + prepositions + articles) - (pronouns + verbs + adverbs + interjections)) + 100)

Heylighen et al. (2002)

Readability Index Formulas
» tried Automated Readability Index, SMOG Readability Formula, Flesch Reading Ease etc.

» decreased effectiveness in cross-genre setting since

» not suitable for short text samples

» e.g.Flesch Reading Ease: 206.835 — 1.015 (— oo =) — 846 (-2 Sy”““es)

total sentences total words
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Custom Features

Text Structure Features
» Type/Token ratio

Stylistic features (occurrence of adjectival endings)

» Average word length

» Usage of punctuation marks

» English: -ly, -able, -ic, -il, -less, -ous etc.

» Spanish: -ito, -ada, -anza, -acho, -acha etc.

» Dutch: -jes, -iek, -eren etc.
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Feature Scaling

Step 1: Scale to sample length

» the feature vector values are divided by the sample length

Mo

featurevector value

pre—scaled — len(sample)

Step 2: Standardize

)
(i) _ *pre—scaled ~ Hx
Xstd =
Ox
O i
»  Xpre_scalea 1S @ fE@tUre vector sample

»

»

U, 1S sample mean of the feature column

o, represents the standard deviation of the feature column

Ivan Bilan and Desislava Zhekova

11.09.2016

#13




LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

CAPS:
A Cross-genre Author Profiling System

Classification

Classification

Gender and age classified separately:

»

»

Support Vector Machine (namely Linear Support Vector Classification) classifier used for gender

classification

Multinomial Logistic Regression for age classification
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Final Results (Cross-genre)

PAN16 Results, Accuracy (Cross-genre, all represented languages)

PAN16 English Spanish
Class Gender Age Both Gender Age Both
Best Score  75.64% 58.97% 39.74% 73.21% 51.79% 42.87%
CAPS 74.36% 44.87% 33.33% 62.50% 46.43% 37.50%

'—S‘l"(‘)’fzt 46.15%  32.05%  1410%  46.43%  2143%  21.43%

Final Top 5 Ranking (PAN16, by overall average)

Place: 1st 2nd 31d (CAPS) 4th
Result: 52.58% 92.41% 48.34% 46.02%
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Dutch
Gender
61.80%
55.00%

41.60%

5th
45.93%

11.09.2016

# 15



LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

CAPS:
A Cross-genre Author Profiling System

Final Results

Final Results (Single genre)

» the system also performs rather effectively in single genre setting

PAN14 and PAN15 Results, Accuracy (Single genre, English)

PAN14-15 Twitter (PAN15) Blogs (PAN14)
Class Gender Age Gender Age
Best Score 85.92% 83.80% 67.95% 46.15%

CAPS 81.69% 73.24% 66.67% 35.90%

Ivan Bilan and Desislava Zhekova

Hotel Reviews (PAN14)

Gender Age

72.59% 35.02%

71.32% 34.77%
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Future work

» use dependancy parsing and extract features based on the tree representation

» Improve features for Spanish and Dutch




LUDWIG-

MAXIMILIANS-
UNIVERSITAT
MUNCHEN

CAPS:

A Cross-genre Author Profiling System

Thank you for your

Ivan Bilan and Desislava Zhekova

attention!

11.09.2016

#18




s | | SAPS:
LMU unversitat || A Cross-genre Author Profiling System References
References

1.  Schmid, H. (1994). Probabilistic Part-of-Speech Tagging Using Decision Trees. Proceedings of International Conference on
New Methods in Language Processing, (pp. 44-49). Manchester, UK.
2. Sparck Jones, K. (1972). A Statistical Interpretation of Term Specificity and its Retrieval. Journal of Documentation, 28(1), 11-

21.

3. Blei,D., Ng, A, & Jordan, M. (2003). Latent Dirichlet Allocation. The Journal of Machine Learning Research, 3(1), 993-1022.

4.  Heylighen, F., Dewaele, J.: Variation in the Contextuality of Language: An Empirical Measure. Foundations of Science 7(3),
293-340 (2002)

5. Flesch, F. (1948). A new readability yardstick. The Journal of applied psychology, 32(3), 221-233.

Ivan Bilan and Desislava Zhekova

11.09.2016 #19




