

CAPS: A Cross-genre Author Profiling System

Ivan Bilan and Desislava Zhekova
Center for Information and Language Processing, LMU Munich, Germany

ivan.bilan@gmx.de

zhekova@cis.uni-muenchen.de

CAPS: A Cross-genre Author Profiling System

Presentation Overview

- » Overview of Author Profiling
- » Training Dataset
- » Software Tools
- » Machine Learning Pipeline
- » Custom Features
- » Classification
- » Final Results

CAPS: A Cross-genre Author Profiling System

Overview of Author Profiling

Author Profiling – attributing an author of a text to a certain sociodemographic class

Real world applications:

- » suspect profiling in forensics
- » customer-base analysis
- » targeted advertising

Cross-genre author profiling:

- » adaptable to any unseen genre
- » label only genres that are easier to label
- » merge all existing genres into one training set to overcome data scarcity

LUDWIG-

CAPS: A Cross-genre Author Profiling System

Training Dataset

~67000

Dutch

Training Dataset

250000


100000

50000

0

English

PAN16 Training Set (Authors)

~200000 200000 Text samples 150000 ~128000

PAN16 Training Set (Text samples)

Spanish

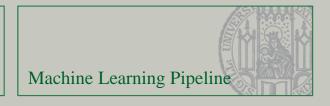
Language

- Artificially increase the number of samples by labeling each text sample
- During evaluation take the most frequent prediction (or the one with the highest confidence score) for the author

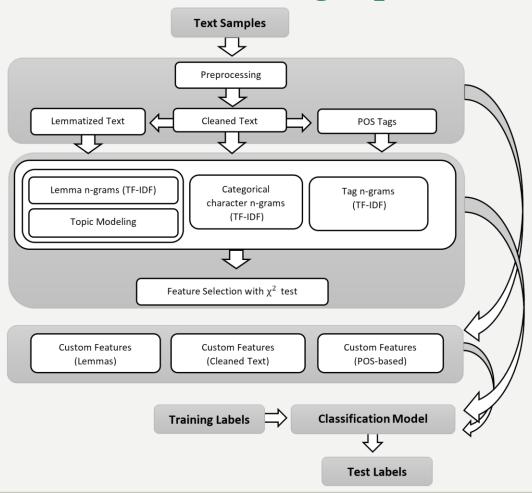
- Labelled with gender: Male Female **>>**
- Age groups: 18-24 25-34 35-49 50-64 65-xx **>>**

CAPS: A Cross-genre Author Profiling System

Software tools


Software Tools

- » Python
- » scikit-learn (main machine learning toolkit)
- » gensim (topic modelling)
- » matplotlib (visualization)
- » TreeTagger (available at http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/)
 - » supports part-of-speech tagging, lemmatization, stemming and chunking
 - » works on multiple languages
 - » has wrappers for various programming languages
 - » freely available for research and education



CAPS:

A Cross-genre Author Profiling System

Machine Learning Pipeline

CAPS: A Cross-genre Author Profiling System

Machine Learning Pipeline

Preprocessing

- » HTML and Bulletin Board Code removal
- » normalization of all links to [URL]
- » normalization of all usernames e.g. @username to [USER]
- » duplicate sample removal

Text representations

- » first experimented with stemmed text representation
- » final system uses lemma and part-of-speech representation
- » the results are saved in a dataframe and each feature accesses the text representation it requires

CAPS:

A Cross-genre Author Profiling System

Machine Learning Pipeline

TF-IDF - The Term Frequency-Inverse Document Frequency

» Emphasize important words (frequent in a text, infrequent in the corpus)

Usage in CAPS:

- » unigrams, bigrams, trigrams for lemmatized text
- » 1-4 grams for POS text representation
- » 3-grams for characters

Topic Modelling with Latent Dirichlet Allocation (LDA)

and Hierarchical Dirichlet Process (HDP)

- » Generative statistical model that allows automated grouping of observed words into topics
- » LDA requires predefined number of topics
- » HDP calculates the number of topics automatically
- » do not confuse with linear discriminant analysis (also known as LDA)

Usage in CAPS:

- » we used LDA with 100 topics
- » HDP showed decreased performance

CAPS: A Cross-genre Author Profiling System

Custom Features

Custom Features

- » Over 40 custom features divided into the following feature clusters:
 - » Dictionary-based Features
 - » POS-Based Features
 - » Text Structure Features
 - » Stylistic Features

CAPS: A Cross-genre Author Profiling System

Custom Features

Dictionary-based Features

Feature	Cluster	Examples per Language				
	Feature Name	English	Spanish	Dutch		
	Connective Words	furthermore, firstly	pues, como	zoals, mits		
	Emotion Words	sad, bored, angry	espanto, carino, calma	boos, moe, zielig		
Dictionary-based	Contractions	l'd, let's, l'll	al, del, desto	m'n, 't, zo'n		
2.5	Familial Words	wife, husband, gf	esposa, esposo	vriendin, man		
	Collocations	dodgy, awesome, troll	no manches, chido	buffelen, geil		
	Abbreviations and Acronyms	a.m., Inc., asap	art., arch	gesch., geb		
	Stop Words	did, we, ours	de, en, que	van, dat, die		

» positive / negative sentiment lists are not used

CAPS:

A Cross-genre Author Profiling System

POS-Based Features

- » Use of Verbs, Interjections, Adjectives, Determiner, Conjunction, Plural Nouns
- » Lexical Measure tell how implicit or explicit the text is

$$F = 0.5 \left(\left((nouns + adjectives + prepositions + articles) - (pronouns + verbs + adverbs + interjections) \right) + 100 \right)$$
Heylighen et al. (2002)

Readability Index Formulas

- » tried Automated Readability Index, SMOG Readability Formula, Flesch Reading Ease etc.
- » decreased effectiveness in cross-genre setting since
- » not suitable for short text samples
- » e.g. Flesch Reading Ease: 206.835 $-1.015 \left(\frac{total\ words}{total\ sentences} \right) 84.6 \left(\frac{total\ syllables}{total\ words} \right)$

CAPS:

A Cross-genre Author Profiling System

Custom Features

Text Structure Features

- » Type/Token ratio
- » Average word length
- » Usage of punctuation marks

Stylistic features (occurrence of adjectival endings)

- » English: -ly, -able, -ic, -il, -less, -ous etc.
- » Spanish: -ito, -ada, -anza, -acho, -acha etc.
- » Dutch: -jes, -iek, -eren etc.

CAPS:

A Cross-genre Author Profiling System

Custom Features

Feature Scaling

Step 1: Scale to sample length

» the feature vector values are divided by the sample length

$$x_{pre-scaled}^{(i)} = \frac{feature vector value}{len(sample)}$$

Step 2: Standardize

$$x_{std}^{(i)} = \frac{x_{pre-scaled}^{(i)} - \mu_x}{\sigma_x}$$

- » $x_{pre-scaled}^{(i)}$ is a feature vector sample
- » μ_x is sample mean of the feature column
- » σ_x represents the standard deviation of the feature column

CAPS:

A Cross-genre Author Profiling System

Classification

Gender and age classified separately:

- » Support Vector Machine (namely Linear Support Vector Classification) classifier used for gender classification
- » Multinomial Logistic Regression for age classification

CAPS:

A Cross-genre Author Profiling System

Final Results (Cross-genre)

PAN16 Results, Accuracy (Cross-genre, all represented languages)

PAN16	16 English			Spanish			Dutch
Class	Gender	Age	Both	Gender	Age	Both	Gender
Best Score	75.64%	58.97%	39.74%	73.21%	51.79%	42.87%	61.80%
CAPS	74.36%	44.87%	33.33%	62.50%	46.43%	37.50%	55.00%
Lowest Score	46.15%	32.05%	14.10%	46.43%	21.43%	21.43%	41.60%

Final Top 5 Ranking (PAN16, by overall average)

Place:	1st	2nd	3 rd (CAPS)	4th	5th
Result:	52.58%	52.47%	48.34%	46.02%	45.93%

CAPS:

A Cross-genre Author Profiling System

Final Results (Single genre)

» the system also performs rather effectively in single genre setting

PAN14 and PAN15 Results, Accuracy (Single genre, English)

PAN14-15	Twitter (PAN15)		Blogs (PAN14)	Hotel Reviews (PAN14)		
Class	Gender	Age	Gender	Age	Gender	Age	
Best Score	85.92%	83.80%	67.95%	46.15%	72.59%	35.02%	
CAPS	81.69%	73.24%	66.67%	35.90%	71.32%	34.77%	

CAPS:

A Cross-genre Author Profiling System

Future work

- » use dependancy parsing and extract features based on the tree representation
- » improve features for Spanish and Dutch

CAPS:

A Cross-genre Author Profiling System

Thank you for your attention!

CAPS: A Cross-genre Author Profiling System

References

References

- 1. Schmid, H. (1994). Probabilistic Part-of-Speech Tagging Using Decision Trees. Proceedings of International Conference on New Methods in Language Processing, (pp. 44-49). Manchester, UK.
- 2. Spärck Jones, K. (1972). A Statistical Interpretation of Term Specificity and its Retrieval. Journal of Documentation, 28(1), 11-21.
- 3. Blei, D., Ng, A., & Jordan, M. (2003). Latent Dirichlet Allocation. The Journal of Machine Learning Research, 3(1), 993-1022.
- 4. Heylighen, F., Dewaele, J.: Variation in the Contextuality of Language: An Empirical Measure. Foundations of Science 7(3), 293–340 (2002)
- 5. Flesch, F. (1948). A new readability yardstick. The Journal of applied psychology, 32(3), 221-233.