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Authorship verification (AV) tasks at PAN 2020 to 20221 (Kestemont, Manjavacas, et al. 2020)

Task: Given two documents, determine if they were written by the same person

• PAN 2020: Closed-set / cross-fandom verification

• A large training dataset is provided by the PAN organizers (Bischoff, Deckers, et al. 2020)
• Test set represents a subset of the authors/fandoms found in the training data

• PAN 2021: Open-set verification

• Test set now only contains “unseen” authors/fandoms
• Training datset is identical to year one

• PAN 2022: Role of judges at court

1https://pan.webis.de/clef20/pan20-web/author-identification.html
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Text preprocessing strategies: Preparing train/dev sets
• Splitting the dataset into a train and a dev set2

• Removing all documents in the train set which also appear in the dev set
• Tokenizing (train/dev sets)3 and counting words/characters (train set)
• Reducing the vocabulary sizes4 : Mapping all rare token/character types to a special unknown symbol
• Re-sampling the pairs for train set in every epoch (Boenninghoff, Hessler, et al. 2019)
• Keeping all dev set pairs fixed!

Test setDev setTrain set
small: 90%
 large: 95%

small: 10%
 large:   5 %

2Dataset available at https://zenodo.org/record/3724096#.X2itQ3UzbQ8
3Spacy tokenizer: https://spacy.io/
4Similar to text distortion algorithm 1 proposed in (Stamatatos 2017)
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Improved re-sampling of document pairs5

• Problem: During training, our model repeatedly sees the same SA-pairs

Algorithm 1 Re-sampling pairs

1: while authors with documents are available do
2: for all authors do
3: if r1 ∼ U[0,1]< 1

2 then
4: if r2 ∼ U[0,1]< 1

2 then
5: Try to sample SA/SF pair
6: else
7: Try to sample SA/DF pair
8: else
9: Try to sample a document for DA pairs

10: Delete author from list if all documents are sampled
11: while two documents are available do
12: if r3 ∼ U[0,1]< 1

2 then
13: Try to sample DA/SF pair
14: else
15: Try to sample DA/DF pair

6 / 13

SA vs. DA 

DA/SF vs. DA/DF

SA/SF vs. SA/DF
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Zipf plot (original PAN re-sampling)

166,926 SA/SF pairs
433,373 SA/DF pairs

9,064 DA/SF pairs
2,711,869 DA/DF pairs

5SA: same author, DA: different authors, SF: same fandom, DF: different fandoms
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Text preprocessing strategies: (Overlapping) sliding windows with contextual prefixes

• Construct a sentence-like unit consisting of tokens that are grammatically linked

• window_length = hop_length + overlapping_length + 1

' Yes , Master Luke , '   Rey     says , a little surprised . ' How did you know ? ' ' You 're very  skilled  . Not just   skilled  . Not just natural  talent , but practiced skill . 

<Star Wars> ' Yes , Master Luke , ' <UNK> says , a little surprised . 

4 / 11
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Hierarchical document encoding6 (Boenninghoff, Nickel, et al. 2019)

RNNw→s

start

word embedding

character representation

<Star Wars>

6Pretrained word embeddings taken from https://fasttext.cc
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Deep Bayes factor scoring

• Define two hypotheses:

Hs : Two documents were written by the same person

Hd : Two documents were written by two different persons

• Two-covariance model (Cumani, Brummer, et al. 2013):

y︸︷︷︸
document embedding

= x︸︷︷︸
author’s writing style

+ ϵ︸︷︷︸
noise term

with x ∼ N (µ,B−1) and ϵ ∼ N (0,W−1)

• Verification score:

Pr(Hs|y1, y2) =
Pr(Hs) p(y1, y2|Hs)

Pr(Hs) p(y1, y2|Hs) + Pr(Hd) p(y1, y2|Hd)
≈

p(y1, y2|Hs)

p(y1, y2|Hs) + p(y1, y2|Hd)

Entropy curves during training:

0 20000 40000
update steps

−10

0

10

logdet B̂−1

logdetŴ−1
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Evaluation results7

• Early-bird scores for dev set (small dataset)

train set evaluation AUC c@1 f_05_u F1 overall
1 early-bird small dev set 0.964 0.919 0.916 0.932 0.933

2 early-bird small test set 0.923 0.861 0.857 0.891 0.883
3 single small dev set 0.975 0.943 0.921 0.951 0.948
4 single large dev set 0.983 0.950 0.944 0.954 0.958
5 ensemble small dev set 0.977 0.942 0.938 0.946 0.951
6 ensemble large dev set 0.985 0.955 0.940 0.959 0.960
7 ensemble small test set 0.940 0.889 0.853 0.906 0.897
8 ensemble large test set 0.969 0.928 0.907 0.936 0.935
9 ensemble large test set 0.969 0.912 0.917 0.920 0.930

7Colours represent the same models/runs
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Evaluation results7

• Best single runs for small/large datasets (at this step we introduced the contextual prefixes)
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Evaluation results7

• Results for ensembles on test set (including non-answers)
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Evaluation results7

• Model 9 = model 6/8 without defining non-answers
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Final ranking of the submitted approaches8

8https://pan.webis.de/clef20/pan20-web/author-identification.html
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Looking forward to the PAN 2021 open-set AV challenge

• Simply splitting authors/fandoms into two disjoint groups

• Train set: 136,068 pairs re-sampled in every epoch
• Dev set: 13,228 pairs

• New challenging dev set:

• It contains only “unseen” authors/fandoms
• Cross-fandom orthogonality: Only SA/DF and DA/SF pairs

• First results (without non-answers and contextual prefixes):

number of authors (train): 142,605
number of authors (dev): 29,543

number of fandoms (train): 1,120
number of fandoms (dev): 412

vocabulary size
(characters)

vocabulary size
(words)

hop_length
train word
embeddings

AUC c@1 f_05_u F1 overall

1 150 15,000 25 YES 0.962 0.898 0.902 0.897 0.915
2 150 5,000 25 YES 0.969 0.907 0.909 0.906 0.923
3 150 50,000 25 YES 0.947 0.855 0.893 0.841 0.884
4 150 15,000 30 YES 0.961 0.896 0.903 0.894 0.913
5 750 15,000 25 YES 0.964 0.902 0.902 0.901 0.917
6 150 15,000 25 NO 0.962 0.896 0.905 0.894 0.914
7 150 5,000 25 NO 0.961 0.895 0.902 0.893 0.912
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Conclusion and future work
Conclusion:

• AV models strongly depend on topical information (Kestemont, Manjavacas, et al. 2020)

• Outstanding results achievable with traditional stylometric features (Weerasinghe and Greenstadt 2020)

• Surprisingly, BERT/Transformer-based models still do not outperform “traditional models” in this field

• But very promising results in cross-domain authorship attribution (Barlas and Stamatatos 2020)

Future work:

• Analysis of errors, contextual prefixes, re-sampling strategies, topic masking

• Rethinking our handling of non-answers (e.g. Monte-Carlo dropout) on a calibration set

• Transfer Learning: Incorporating contextualized word representations (e.g. ELMo, BERT)

• Incorporating “compensation techniques” to deal with topical information

• Domian-suppression (e.g. domain-adversarial training) (Bischoff, Deckers, et al. 2020)
• Domian-adaptation (e.g. optimal transport) (Courty, Flamary, et al. 2017)

Acknowledgement
Big thanks to the PAN2020-AV-team for organizing the shared task! ,
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