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General Workflow

Preprocessing

Document-Profile Features Stylometry Features

Tweets Aggregate tweets 
of each user

-  Clean Html
-  Detwittify

-  Remove Numbers
-  Remove Punctuation

raw   tweets

clean tweets

- Second Order Attributes - Model used in PAN’15

Support Vector Machine

Feature Concatenation

extracted     features
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Stylometric and Structural Features - PAN’15

Experimented with many features:

Profiling
Features

Structural

Number of
Hashtags

Number of
Links

Number of
Mentions

Stylometry

Tf-idf of
Ngrams

Bag of
Smileys

Ngram
Graphs

Word length Number of
Uppercase

Finally settled on term-frequencies 3-grams(age) and
unigrams(gender)
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Second Order Attributes-SOA

Idea originally from PAN’13 winning Team (INAOE, Mexico)1

2-step method, similar approach to Naive Bayes

Intuition

1 Associate the different terms in our collection with target
profiles (age or gender classes) → Calculate words-classes
vectors based on word frequency

2 Project the documents in the profile space according to the
weighted aggregation of their terms → Calculate
document-classes vectors

1López-Monroy et al.: INAOE’s participation at PAN’13: Author Profiling
task Notebook for PAN at CLEF 2013. In: CLEF 2013 Evaluation Labs and
Workshop
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Weighted SOAComplementary

Novelties introduced:

� Use complementary classes documents for each word-class
relation

� Add weighting term to boost the influence of terms in
documents of rare profiles

Intuition

Counter skewed class distribution of data → Use complementary
classes for each term-profile relation → More even amount of
data for each class → Robust estimates and lesser bias
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Weighted SOAComplementary

Novelties introduced:

� Use complementary classes documents for each word-class
relation

� Add weighting term to boost the influence of terms in
documents of rare profiles

Intuition

Exploit knowledge of prior distribution of documents into classes
→ The rarer a profile, the higher the influence of the terms
included in it → Weighting term inversely proportional to the
probability of the profile → Cope with the sparsity of specific
profiles
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Dataset

Much more data than PAN’15:

6 1070 Users: 436 English | 250 Spanish | 384 Dutch

W 562812 Texts: 277792 English | 208620 Spanish | 76800
Dutch

Age: Imbalanced dataset over age classes

Gender: Uniform distribution of male/female samples
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% Accuracy of 4-fold CV tests

Models
English Spanish Dutch

Age Gender Age Gender Gender

N-grams(PAN’15) 47.0 74.8 49.6 68.8 76.8
SOA 47.5 76.2 54.0 72.8 76.0

SOAC 49.1 76.8 50.4 71.6 76.8
W-SOAC 49.1 76.8 50.4 72.8 76.8

N-grams + W-SOAC 50.0 77.5 52.0 73.2 78.1
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PAN’16 Data
Results on Train Data
Results on Test Data

Average Joint Accuracy

Team Global English Spanish Dutch

Busger et al. 0.5258 0.3846 0.4286 0.4960
Modaresi et al. 0.5247 0.3846 0.4286 0.5040
... ... ... ... ...
Bougiatiotis & Krithara 0.4519 0.3974 0.2500 0.4160
... ... ... ... ...
Deneva 0.4014 0.2051 0.2679 0.6180
... ... ... ... ...

Average Accuracy: 45.19%

Position: 6th (22 teams overall)

1st Position on global ranking for the English language
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Conclusions

X Descriptive and stylometric features model age and especially
gender well enough.

X Fusion schemes seem to boost the performance

X Age subtask considerably more difficult across all models
and languages

X Difference in performance between the test datasets highlight
the added difficulty of the cross-genre task
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Ongoing-Future Work

÷ Model age and gender in a unified profile space → Tackle
the assumption of independence between tasks

÷ Examine more sophisticated fusion schemes and deploy
ensemble learning techniques to exploit the difference in the
representation spaces of each method

÷ Emphasis on cross-genre specialization, important features
per genre, varying document length, per language-models, ...
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PAN’16 Author Profiling Challenge

Tasks:

Predict Age and Gender

Languages: English, Spanish
and Dutch(gender only)

Novelties:

Focus on cross-genre
evaluation

Bigger dataset ( Users:
1070, Tweets: 562812)

Added ’65-xx’ age class

2016
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SOA-Calculations

1 Calculate word-profile vectors → Find descriptive terms per
class, exploiting the per-class frequency of the words

ti ,j =
∑

k:dk∈Pj

log(1 +
tfi ,k

len(dk)
)

2 Map documents in profile space, using the word-profile
vectors, from step 1, of the containing terms for each
document

dk,j =
∑

i :ti∈dk

tfi ,k
len(dk)

× ~ti
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WSOAC- Calculations

1 Use complementary classes for the word-profile vectors

ti ,j =
∑

k:dk /∈Pj

log(1 +
tfi ,k

len(dk)
∗ wk)

2 Use weights per class for the word-profile vectors

ti ,j =
∑

k:dk /∈Pj

log(1 +
tfi ,k

len(dk)
∗wk)

3 ”Normalize” document-profile vectors by subtraction of the
minimum score(corresponds to the most probable class)

dk,j = (
∑

i :ti∈dk

tfi ,k
len(dk)

× ~ti ) − min(dk)
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Comparison of PAN’15-16 models
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Voc, Dict Length? What about Tokenization?
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% Accuracy of 4-fold CV tests

Models
English Spanish Dutch

Age Gender Age Gender Gender

N-grams(PAN’15) 47.0 74.8 49.6 68.8 76.8
LSI 41.8 70.2 50.4 65.2 74.0

SOA 47.5 76.2 54.0 72.8 76.0
SOAC 49.1 76.8 50.4 71.6 76.8

W-SOAC 49.1 76.8 50.4 72.8 76.8
N-grams + W-SOAC 50.0 77.5 52.0 73.2 78.1

7 / 8



Test Data % Accuracy

Dataset Language Subtask Accuracy

Social Media

Dutch Gender 44.00

English
Age 30.46

Gender 53.45

Spanish
Age 34.38

Gender 57.81

Blogs

Dutch Gender 41.60

English
Age 55.13

Gender 69.23

Spanish
Age 32.14

Gender 67.86
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