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General Workflow
Proposed Method Preprocessing

General Workflow

Aggregate tweets
@ of each user

raw | tweets

- Clean Html
- Detwittify
- Remove Numbers
- Remove Punctuation

Preprocessing

clean tweets

Document-Profile Features ‘ Stylometry Features

- Second Order Attributes - Model used in PAN'15

extracted | features

Feature Concatenation

Support Vector Machine
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Proposed Method

Tweets

General Workflow
Preprocessi
Feature
Classification

Concatenate the tweets of each user » Profile Based Approach

@ Raw Tweet: Noisy data,
HTML tags, links, etc

Sample Tweet

Thanks for the follow back
<a href="/WolfgangDigital"
class="twitter-atreply
pretty-link js-nav"
data-mentioned-user-id="391
869708"
><5>0</s><b>WolfgangDigital
</b></a> I1&#39;11 be
keeping an eye out for any
vacancies you advertise in
the near future.
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Classification

Tweets

Concatenate the tweets of each user » Profile Based Approach

@ Raw Tweet: Noisy data, Sample Tweet

HTML tags, links, etc Thanks for the follow back
o Cleaning HTML @WolfgangDigital I&#39;11
be keeping an eye out for
any vacancies you
advertise in the near
future.
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Tweets

Concatenate the tweets of each user » Profile Based Approach

@ Raw Tweet: Noisy data,
HTML tags, links, etc Sample Tweet

o Cleaning HTML Thanks for the follow back

I&#39;11 be keeping an eye

out for any vacancies you

advertise in the near

future.

o Detwittify (remove
hashtags, replies etc)
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Proposed Method Preprocessing

Feature Extraction

Classification

Tweets

Concatenate the tweets of each user » Profile Based Approach

@ Raw Tweet: Noisy data,

HTML tags, links, etc Sample Tweet
o Cleaning HTML Thanks for the follow back
I 11 be keeping an eye out
for any vacancies you
advertise in the near
future

o Detwittify (remove
hashtags, replies etc)

@ Remove all non-letter
characters (numbers, ...)
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Proposed Method Preprocessing

Feature Extraction

Classification

Stylometric and Structural Features - PAN'15

Experimented with many features:
Features
v v v v v v

Number of | | Number of | | Number of | | Tf-idf of | | Bag of | | Ngram | | Word length | | Number of
Hashtags Links Mentions Ngrams | | Smileys | | Graphs Uppercase

Finally settled on term-frequencies 3-grams(age) and
unigrams(gender)
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Second Order Attributes-SOA

o Idea originally from PAN'13 winning Team (INAOE, Mexico)?
@ 2-step method, similar approach to Naive Bayes

!Lépez-Monroy et al.: INAOE's participation at PAN'13: Author Profiling

task Notebook for PAN at CLEF 2013. In: CLEF 2013 Evaluation Labs and
Workshop
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General Workflow
Proposed Method Preprocessing

Feature Extraction

Classification

Second Order Attributes-SOA

o Idea originally from PAN'13 winning Team (INAOE, Mexico)?
@ 2-step method, similar approach to Naive Bayes

@ Associate the different terms in our collection with target
profiles (age or gender classes) — Calculate words-classes
vectors based on word frequency

@ Project the documents in the profile space according to the
weighted aggregation of their terms — Calculate
document-classes vectors

!Lépez-Monroy et al.: INAOE's participation at PAN'13: Author Profiling
task Notebook for PAN at CLEF 2013. In: CLEF 2013 Evaluation Labs and
Workshop
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Example of Age Specific Terms
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Proposed Method Preprocessing
Feature Extraction

Classification

Example of Gender Specific Terms

0.7 female
= male

o ° o o
w n [0} o

Membership Probability

o
)

0.1

shopping Terms football
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Feature Extraction

Classification

Example illustration of generated SOA

Documents D

doc

doc2

docD

and”

0.09
0.35

0.14

Vocabulary V

“football” | “shopping" | ....

0.60
0.21

Documents D

>
0 ) E
0.28 . X3
- 8
>
08
Target Profiles P
Female Male
doc 04 0.6
doc2 0.48 0.52
docD 0.72 0.28

Target Profiles P

Female
“and” 0.45
“football” 0.35

“shopping” 0.68

Male

0.55

0.65

0.32
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General Workflow
Proposed Method Preprocessing

Feature Extraction

Classification

Weighted SOAComplementary

Novelties introduced:

@ Use complementary classes documents for each word-class
relation

Counter skewed class distribution of data — Use complementary
classes for each term-profile relation — More even amount of
data for each class — Robust estimates and lesser bias

15/28



General Workflow
Proposed Method Preprocessing

Feature raction

Classification

Weighted SOAComplementary

Novelties introduced:

¥ Use complementary classes documents for each word-class
relation

¢ Add weighting term to boost the influence of terms in
documents of rare profiles

Exploit knowledge of prior distribution of documents into classes
— The rarer a profile, the higher the influence of the terms
included in it — Weighting term inversely proportional to the
probability of the profile — Cope with the sparsity of specific
profiles

15/28



Proposed Method

Feature
Classifica

@ Introduction

© Proposed Method

o Classification

© Experimental Results

@ Conclusions and Future Work

16

28



General Workflow
Proposed Method Prepro ing

Feature Extraction

Classification

Classification

Experimented with many different classifiers:(sklearn
implementations)

o Naive Bayes

@ Decision Trees
@ Random Forests
e SVM
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Experimented with many different classifiers:(sklearn
implementations)

o Naive Bayes

@ Decision Trees
@ Random Forests
e SVM

- Age: RBF kernel
- Gender: Linear kernel

17/28



Proposed Method

Classification

Experimented with many different classifiers:(sklearn
implementations)

o Naive Bayes

@ Decision Trees
@ Random Forests
e SVM

- Age: RBF kernel
- Gender: Linear kernel
- Hyper-parameters selected through grid search
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PAN'16 Data
Results on Train Data

Experimental Results Results on Test Data

Dataset

Much more data than PAN'15:
& 1070 Users: 436 English | 250 Spanish | 384 Dutch

[3) 562812 Texts: 277792 English | 208620 Spanish | 76800
Dutch

o Age: Imbalanced dataset over age classes

@ Gender: Uniform distribution of male/female samples

19/28



PAN'16 Data

Experimental Results

English Dataset Age Distribution

200
180
160
140
120
100
80
60
40
20

18-24 25-34 34-49 50-64 65-XX
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% Accuracy of 4-fold CV tests

English Spanish Dutch
Age Gender Age Gender Gender

N-grams(PAN'15) | 47.0 748 496 6838 76.8

Models

N-grams + W-SOAC ‘ 50.0 77.5 520 73.2 78.1
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% Accuracy of 4-fold CV tests

English Spanish Dutch
Age Gender Age Gender Gender

N-grams(PAN'15) | 470 748 49.6 68.8 76.8
SOA 475 762 54.0 728 76.0
SOAC 49.1 76.8 50.4 71.6 76.8

Models

N-grams + W-SOAC ‘ 50.0 77.5 520 73.2 78.1
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Experimental Results Results on Test Data

% Accuracy of 4-fold CV tests

English Spanish Dutch
Age Gender Age Gender Gender

N-grams(PAN'15) | 470 748 49.6 68.8 76.8

Models

SOA 475 762 54.0 728 76.0
SOAC 491 76.8 504 716 76.8
W-SOAC 49.1 76.8 504 7238 76.8

N-grams + W-SOAC | 560.0 77.5 520 73.2 78.1
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Experimental Results

Average Joint Accuracy

PAN'16 Data
Results on Train Data
Results on Test Data

Team Global  English Spanish Dutch

Busger et al. 0.5258 0.3846 0.4286 0.4960
Modaresi et al. 0.5247 0.3846 0.4286 0.5040
Bougiatiotis & Krithara 0.4519 0.3974 0.2500 0.4160
Deneva 0.4014 0.2051 0.2679 0.6180
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PAN'16 Data
Results on Train Data

Experimental Results Reibs em Tt Bers

Average Joint Accuracy

Team Global  English Spanish Dutch
Busger et al. 0.5258 0.3846 0.4286 0.4960
Modaresi et al. 0.5247 0.3846 0.4286 0.5040

Bougiatiotis & Krithara 0.4519 0.3974 0.2500 0.4160

Deneva 0.4014 0.2051 0.2679 0.6180

@ Average Accuracy: 45.19%
o Position: 6™ (22 teams overall)
@ 1% Position on global ranking for the English language

24 /28
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Conclusions and Future Work

Conclusions

v' Descriptive and stylometric features model age and especially
gender well enough.

v Fusion schemes seem to boost the performance

v' Age subtask considerably more difficult across all models
and languages

V' Difference in performance between the test datasets highlight
the added difficulty of the cross-genre task

26 /28



Conclusions and Future Work

Ongoing-Future Work

f8 Model age and gender in a unified profile space — Tackle
the assumption of independence between tasks

3 Examine more sophisticated fusion schemes and deploy
ensemble learning techniques to exploit the difference in the
representation spaces of each method

#8 Emphasis on cross-genre specialization, important features
per genre, varying document length, per language-models, ...

27 /28



Conclusions and Future Work
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PAN'16 Author Profiling Challenge

Tasks:
@ Predict Age and Gender

@ Languages: English, Spanish
and Dutch(gender only)




PAN'16 Author Profiling Challenge

Tasks:
@ Predict Age and Gender

@ Languages: English, Spanish
and Dutch(gender only)

Novelties:

@ Focus on cross-genre
evaluation

o Bigger dataset ( Users:
1070, Tweets: 562812)

@ Added '65-xx’ age class




SOA-Calculations

@ Calculate word-profile vectors — Find descriptive terms per
class, exploiting the per-class frequency of the words

tfk
tj= > log( (14 en(d)
kdkEP

@ Map documents in profile space, using the word-profile
vectors, from step 1, of the containing terms for each
document

tf,'7k -

X

de ;= t;
o len(dy)

iiti€dy




WSOAC- Calculations

@ Use complementary classes for the word-profile vectors

tf; k
ji= I 1 )
ti E og(1+ fen(dy) * W)

k:dy ¢ P;

@ Use weights per class for the word-profile vectors

tfi k
tii= log(1 .
J Z Og( + Ien(dk) * Wk)

k:dkng

© "Normalize” document-profile vectors by subtraction of the
minimum score(corresponds to the most probable class)

(Y s 6) — min(di)

len(
iti€dy




Comparison of PAN'15-16 models

Age Task Gender Task
77,5
50,0 English g
English 74,8
47,0
732
Spanish 68,8
spansh - e
panis| 781
49,6 2
430 450 460 470 480 490 500 5,0 520 530 64 6 68 70 7 74 76 78 80
EPAN'16 mPAN'LS EPAN'16 mPAN'1S



Voc, Dict Length? What about Tokenization?




% Accuracy of 4-fold CV tests

English Spanish Dutch

Models Age Gender Age Gender Gender
N-grams(PAN'15) 470 748 49.6 68.8 76.8
LSI 418 702 504 652 74.0
SOA 475 762 54.0 728 76.0
SOAC 491 768 504 716 76.8
W-SOAC 49.1 768 504 728 76.8
N-grams + W-SOAC | 50.0 77.5 520 73.2 78.1




Test Data % Accuracy

Dataset ‘ Language Subtask Accuracy
Dutch Gender 44.00
. Age 30.46
Social Media English Gender 53.45
. Age 34.38
Spanish Gender 57.81
Dutch Gender 41.60
. Age 55.13
Blogs English Gender 69.23
. Age 32.14
Spanish Gender 67.86
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