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Unsupervised Personality Recognition from Text: 
Possible Applications

-what is personality?

-what is personality recognition?

-how can we recognize personality from text?

-how can we recognize it in an unsupervised way?

-which applications?
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Personality describes persistent human 
behavioral responses to broad classes of 
environmental stimuli.
[Adelstein e t al 2011]“          ”
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The Big 5 factor theory

-self assessments
-observed assessments (+agreement) ￹

-100 item test
-50 item test
-44 item test
-10 item test

                                      Ground truth
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Personality Recognition

is the automatic classification of the personality of authors from 
behvioral features (text, facial expressions, profile pictures, works, 
and so on). gold standard labels can be obtained by means of the 
big5 personality tests.
[Norman 1963; Costa & MacRae 1985; Digman 1990]
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is the automatic classification of the personality of authors from 
behvioral features (text, facial expressions, profile pictures, works, 
and so on). gold standard labels can be obtained by means of the 
big5 personality tests.
[Norman 1963; Costa & MacRae 1985; Digman 1990]

5 classifiers (one per trait)

predict binary classes or scores
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Approaches to Personality Recognition from text

Bottom-Up approach
Search for patterns associated to

Personality trait poles

labeled
text

extraling. 
feature

pattern

Top-down approach
Exploit lexical resources 

as features, finding correlations
with personality trait poles

resource
labeled

textcorrelation

[Oberlander & 
Nowson 2006]

[Iacobelli et al 
2011]

[Mairesse et al 
2007]

[Scwartz et al 
2013]



  

Sep 16, 2014

Fabio Celli 
fabio.celli@unitn.it

Approaches to Personality Recognition from text

Bottom-Up approach
Search for patterns associated to

Personality trait poles

labeled
text

extraling. 
feature

pattern

Top-down approach
Exploit lexical resources 

as features, finding correlations
with personality trait poles

resource
labeled

textcorrelation

Mixed approach
Use many resources (sentiment, 

Psycholinguistic, semantic) + word patterns
+ feature selection

[Oberlander & 
Nowson 2006]

[Iacobelli et al 
2011]

[Mairesse et al 
2007]

[Scwartz et al 
2013]

[Markovikj et al 
2013]
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Approaches to Personality Recognition from text

5 classifiers (one per trait)

predict binary classes or scores

Large feature space, reuced with feature selction
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Unsupervised personality recognition from text
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Unsupervised personality recognition from text

We need:

-unlabeled text + authors (many texts per author)
-small labeled test set

-correlations between language and personality

Fabio Celli 
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In literature:
3 classes: high, (y) mid, (o) low (n)
2 classes: high (y) low (n)
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labeled
data

model

new
unseen

data

Problems of supervised:

1) overfitting → social 
network data samples are 
too small to extract good 
models and bottom up 
approaches extract very few 
good patterns

2) multilinguality → top 
down approaches use 
language dependent  
resources

data

features
(bottom-up
or top-down)
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Domain adaptation is a learning problem where 
a model is generalized across domains, 

and it is successfull when it minimizes the difference 
of performance from a source to a target domain

[BenDavid et Al. 2006]

model

source
domain

sample

data

features
(bottom-up
or top-down) target

domain=

Avantage of 
unsupervised
Personality 
recognition:

- domain 
adaptability
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We added a part of the algorithm (semi-supervised). We 
explot the high confidence predictions from the 
unsupervised system to label an unlabeled large training set 
and extract n-grams from there that we add to the initial 
correlation set 

High 
conf
labels

Large
Unlabeled

set

n-grams



  

Sep 16, 2014

High 
conf
labels

Large
Unlabeled

set

n-grams

Two different datasets

essays
fb

essays 
[Pennebaker & King 1999]
[Mairesse et Al. 2007] 
is a big collection of stream 
of consciousness writings
of studentswho took 
the big5. 
Lang: English
Unlabeled= ~2000 users
Test= ~200 users

PersFB
[Celli & Polonio (2013)]
is a small collection 
of Facebook statuses 
of students 
who took the big5. 
Lang: Italian.
Unlabeled= ~200 users
Test= ~30 users
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12dimensions:

Nchar, Nphon, Nsyl,
Kffrq, Kfcat, Brownfrq

Tlfrq, 
Conc, Fam
Imag, aoa
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60+ dimensions

Posemo, negemo,
Anx, anger, sad,

Cogmech, insight, cause,
Certain, incl, excl
See, hear, feel,

Bio, body, health, sex,
Space, time, work

Achieve, leisure, home,
Money, relig, death

…
...
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Evaluation

Since each 
personality trait 

is bipolar,
 we considered:

 true positives = 
correct predictions for both 

false positives = 
wrong predictions for both 

resullts
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Results

dataset parameters avg F1

persfb
essays

persfb
essays

rand baseline (2c)
rand baseline (2c)

All features (2c)
All features (2c)

.608

.655

.686

.686

Evaluation

Since each 
personality trait 

is bipolar,
 we considered:

 true positives = 
correct predictions for both 

false positives = 
wrong predictions for both 
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collected > 200.000
posts and > 13.000

Authors. automatically
annotated withPersonality

(Secure / Neurotic)
+

added new correlations
extracted from Twitter
from recent literature
[Quercia et Al. 2011]
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collected > 200.000
posts and > 13.000

Authors. automatically
annotated withPersonality

(Secure / Neurotic)
+

added new correlations
extracted from Twitter
from recent literature
[Quercia et Al. 2011]

validation:
comparison against
analyzewords.com

and
essays

AnalyzeWords helps reveal your personality 
by looking at how you use words in Twitter. 
It is based on good scientific research 
[Pennebaker et al 2001] 
connecting word use to who people are. 

emotional stability
in Twitter

Conversations
[Celli & Rossi 2012]
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collected > 200.000
posts and > 13.000

Authors. automatically
annotated withPersonality

(Secure / Neurotic)
+

added new correlations
extracted from Twitter
from recent literature
[Quercia et Al. 2011]

emotional stability
in Twitter

Conversations
[Celli & Rossi 2012]

ResultsSecure 
users tend to
build mutual 
connections
while having

conversations.

Neurotic 
users instead
tend to build

longer chains and
have conversations
with distant people
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emotional stability
in Twitter

Conversations
[Celli & Rossi 2012]
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We are collecting the personality of Twitter users with 2 apps:

http://personality.altervista.org/personalitwit.php

(under dev)
http://personality.altervista.org/mypersonality/en/mypersonality.php
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Open minded and
introvert users 

have the highest 
Edge weight

(interaction strength)
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Analysis of 
Ego-Networks
in Facebook

[Celli & Polonio 2013]

collected > 5.000
posts and > 100

authors
from one access user,

automatically
annotated with

Personality
typesdata

test set:
23 students

took Big5 test
and fb + off

data

Uncooperative
users have the

highest clustering
coefficient 

nodes that tend 
to participate 

to conversations
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Deception Detection
Via Personality

[Fornaciari et. al. 2013]
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Deception Detection
Via Personality

[Fornaciari et. al. 2013]

Task: predict deceptions using
personality traits as features

Can we detect liars exploiting personality?
Data: DeCour, 35 defendants from

 4 hearings guity for calumny and false testimony
in 4 different Italian courts 

Language: Italian
DeCour
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Labeled 
training

Labeled
test

Unsup./semisup. 
Personality recognition is 
useful in those domains 
where it is difficult to retrieve 
labeled data

Summing up:

 



  

Sep 16, 2014

Fabio Celli 
fabio.celli@unitn.it

Labeled 
training

Labeled
test

Unsup./semisup. 
Personality recognition is 
useful in those domains 
where it is difficult to retrieve 
labeled data

It is domain adaptive model

source
domain

target
domain=

Summing up:

 



  

in conclusion:
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-unsupervised: 
adaptability, 
applicability in extreme conditions

-supervised: 
domain dependent, 
high performance
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