InfoTracker:
 Pedigree Tracking in the Face of Ancillary Content

Eugene Creswick, Terrance Goan and Emi Fujioka Stottler Henke Associates Inc.

1107 NE 45th St., Suite 310, Seattle, WA 98105
206-675-1169 FAX: 206-545-7227
rcreswick@stottlerhenke.com http://www.stottlerhenke.com

Track Document Pedigree

Track Document Pedigree

Applications

Plagiarism

Information Flow

Security Policies

The Challenge

Common content confuses comparisons

determines the degree of extremity required of the outliers. N can be used to shift the balance betwecn precision and recall. For example,
the full 116 data points of the results in Table 2 have a lower quartile of $1.837\left(Q_{1}\right)$ and an upper quartile of $47.250\left(Q_{3}\right)$, indicating that 99 data points have scores under 1.837 and 87 data points have scores the top seven results are retained.
The experiment described in Section 4.2 was run with varying vil es of N from the range [0-6]. Low values of N represent very conservative estimates of the distribution of unrelated documents, and
sets a low threshold for outliers. Each full--nit increment increases sets alreshold by an amount equal to the inter-quartile range, trimming the query results more aggressively. The full test corpus of 38
query decuments was run on ench sucessive value of N and the average number of resulss, average precision, and average recall are
recorded in Table 3 .

Table 3. Precision/Recall sazisisis for the pedigere detection experiment,
as a function of outlier extremity.

N	Ressir Conet	Precision	Recall
Notrimming	10253	0.03	0.98
${ }_{0}$	4095	0.11	${ }_{0}^{097}$
0.5	28.71	0.14	0.93
1	22.29	0.16	0.91
15	${ }_{1892}^{189}$	0.19	${ }^{0.90}$
${ }_{2}^{2} 5$	1581 1347	${ }^{0.21}$	088 0.87
3	11.76	0.24	0.84
3.5	1050	0.27	${ }_{0}^{0.84}$
4	9.63	0.27	0.81
45	8.82	0.29	0.80
5	8.18	0.31	${ }^{0.787}$
${ }_{6}^{55}$	${ }_{713}^{755}$	0.33 0.36	${ }_{0}^{077}$

Table 3 clearly shows the control available over the balance beween precision and recall, and demonstrates the amount of result the most minimal trimming attempted shortened the results list by over 60% (compared to the initial minimum size of 106 results) yet only reduced average recall by 1% compared to the case where no
trimming was done.

5 CONCLUSIONS AND FUTURE WORK
During the execution of this proje
directions to pursue in the future:
Evaluate in an Active Learale senario: Foremost in future
goals is to perform an exhaustive evaluation of the InfoTracker prototype in a scenario that takes advantage of Active Learning to Incorporate time stamps: The current approach does not take the temporal aspect of document autboring and revse into account a source with a historical document, then both the source and the sibling document are likely to be returned in the list of results. These false-positive results can be reduced by considering the
dates that the returned documents are authored, possibly presenting the results hierarchically, or only returning either the youngest or oldest sources.
Overlap size: Another indication of the actual structure of the document pedigree is available in the content of the overlapping sec-
tions themselves. For example, if document C contains content
taken directly from document B, which was originally taken from document A, there is a chance that the overlapping section that C
shares with B will be larger than the overlapping section found to be common to C and A. lapping content between C and A is a proper subset of the overlaps shared between C and B. In-depth analysis of the similarities may reveal more ing content shared between multiple documents Iternative outlier intricacies of the document pedigree.
of each results list may more the characteristics of the flat tails bution. If so, a more complex outlier detection method (sish as Grubbs' Test for Outliers [5] may be able to determine a threshold for result trimming that improves precision.
We have presented an approach to document indexing and search hat enables the detection of document pedigree when substantial ancillary content is present. We have compared this approach to the ommon vector-space approach used frequently for information retrieval tasks, showing that our approach is better able to manage
the presence of ancillary content. InfoTracker makes use of efficient disk-based data structures that promise to scale well with large corpora that do not fit in memory; however, a thorough evaluation of the scalability of Info Tracker is still a topic for future investigation. Evaluation on the proposal data set revealed that a great deal of
control is available over the precision/recall tradc-off. This can be incorporated into tools in the future to adapt to the needs at hand. For example, applications dealing with the dissemination of potentially classificd content will require a high degree of recall, while an apavoid false positives with higher precision.

REFERENCES

[11 Turnillin. Wetsice: hitp://wwwiunaitincom, June 2008,

(4) Paoko
14) Paolo Ferragina and Roberto Gressi, The string b-tree; a new data
structure for string seanch in extenal menory and is applicatioses',

[5] Frank E. Cubte 'Procedurs for dectecting outhing obsenations in
151 Fank E. Grubsex, Procedures for detecting ourlying

SIGMOD-SIGART symposiun on Primetples of database syxtems, pp.
181

 (2005). ACM.

 Center ISSN 0948 -695x.
${ }^{101}$ Esko Uklonen $14(3), 249-260$,
[III W. 1 . Wilburad D95).

Common content confuses comparisons

determines the degree of extremity required of the outliers. N can be used to shift the balance between precision and recall. For example,
the full 116 data points of the results in Table 2 have a lower quartile of $1.837\left(Q_{1}\right)$ and an upper quartile of $47.250\left(Q_{3}\right)$, indicating that 29 data points have scores under 1.837 and 87 datapoints have scores the top seven results are retained.
The experiment described in Section 4.2 was run with varying valwes of N from the range [0-6]. Low values of N represent very conservative estimates of the distribution of unrelated documents, and
sets a low threshold for outliers. Each full--nit increment increases the threshold by an amount equal to the inter-quartile range, trimming the query results more aggressively. The full test corpus of 38 query documents was run on each suceessive value of N and the average number of results, average precision, and average recall are
fecorded in Table 3 .

Table 3. Precision/Recall saxisisiss for the pedigree detection experiment.
as a function of outlier extremity.

N	Ressir Cont	Precision	Recall
NoTrimming	10253	0.03	098
05	4095	0.11	097
1	${ }_{2}^{28.71}$	0.14	${ }_{0}^{093}$
15	1892	0.19	090
2	15.81	0.21	088
25	13.47	0.23	0.87
3	11.76	0.24	0.84
3.5	1050	0.26	0.84
4	9.63	0.27	0.81
45	8.82	0.29	0.80
5	8.18	0.31	0.78
55	755	0.33	0.78
	7.13	0.36	0.77

Table 3 clearly shows the controf available over the balance beween precision and recall, and demonstrates the amount of result the most minimal trimming attempted shortened the results list by over 608 (compared to the initial minimum size of 106 results) yet only reduced average recall by 18 compared to the case where no
trimming was done.

5 CONCLUSIONS AND FUTURE WORK
During the execution of this project, we have identified a number of directions to pursue in the future:
Evaluate in an Active Learning seenario: Foremost in our future prototype in a scenario that takes advantage of Active Learning to identify and mark boilerplate content while the system is in usc. ncorporate time stamps: The current approach does not take the
temporal aspect of document authoring and reusc into account temporal aspect of document authoring and reuse into account
when determining pedigrec. Therefore, if a query document shares a source with a historical document, then both the source and the sibling document are likely to be returned in the list of results.
These falsc-positive results can be reduced by considering the These false-positive results can be reduced by considering the
dates that the returned documents are authored, possibly presenting the results hierarchically, or only returning either the youngest ing the results hier
or oldest sources.
Overlap stze: A nother indication of the actual structure of the document pedigree is available in the content of the overlapping sec-
tions themselves. For example, if document C contains content
taken directly from document B, which was originally taken from document A, there is a chance that the overlapping section that C
shares with B will be larger than the overlapping section found to be common to C and A. In tead it it is highlyly likely that the overlapping content between C and A is a proper subset of the overlaps shared between C and B. In-depth analysis of the simil aritics may reveal more intric x tent shared between multiple docu
Alternative outlicr deffinitions: The characteristics of the flat tails of each results list may more closely fit a certain type of distriGrubbs' 'Test for Outliess [5] may be able to determine a threshold for result trimming that improves precision.
We have presented an approach to document indexing and search hat enables the detection of document pedigree when substantial ancillary content is present. We have compared this approach to the eval tasks, showing that our approch is better ibflermation retrieval tasks, showing that our approach is better able to manage
the presence of ancillary content. InfoTracker makes use of efficient disk-based data structures that promise to scale well with large corpora that do not fit in memory; however, a thorough evaluation of the scalability of Info Tracker is still a topic for future investigation. Evaluation on the proposal data set revealed that a great deal of
control is available over the precision/recall trade-off. This can be incorporated into tools in the future to adapt to the needs at hand. For example, applications dealing with the dissemination of potentially classified content will require a high degree of recall, while an apavoid false positives with higher precision.

REFERENCES

131 Da
 ACM.46(2), $236-280$. March 1999).
151 Fank E, Grubts, Procedures for detecting out ying obsenations in
sumples. Tecthamerretics, $11(1), 1-21$, February $19(9)$.
 and plagianizec docuncens: Jowirnal of the Americun Socie

181 Domald Mazler Yaiviv Bensiscin Broce W. Cont

 ${ }^{1} 101 \mathrm{E}$

Common content confuses comparisons

determines the degree of extremity required of the outliers. N can be used to shift the balance between precision and recall. For example,
the full 116 data points of the results in Table 2 have a lower quartile of $1.837\left(Q_{1}\right)$ and an upper quartile of $47.250\left(Q_{3}\right)$, indicating that 29 data points have scores under 1.837 and 87 data points have scores
under 47.250 . With $N=6$, the threshold is set 0319728 , and only the top seven results are retained.
The expeciment described in Section 4.2 was run with varying val-
ues of N from the range $[0-61$. Low values of N represent very conues of N from the range [0-6]. Low values of N represent very conservative estimates of the distribution of unrelated documents, and
sets a low threshold for outliers. Each full-unit increment increases sets a low threshold for outliers. Each full-unit increment increases
the threshold by an amount equal to the inter-quartile range, trimming the query results more aggressively. The full test corpus of 38
query documents was run on each successive value of N and the query documents was run on each successive value of N and the average number of results, average precision, and average recall are
recorded in Table 3.
Table 3. Precisison/Recall saxisisiss for the pecigree detection experiment,

N	Resal Conut	Precision	Recall
NoTrimming	16253	0.03	0\%8
S	40.95	0.17	0.97
0.5	28.71	0.14	0.93
15	$\begin{array}{r}22.29 \\ \hline 1892\end{array}$	0.16 0.19	0.91 090
1.5	18.92 1581 1851	0.19	-
${ }_{2}$	$\underset{\substack{15.81 \\ 13.4 \\ \hline 185}}{ }$	${ }^{0.21}$	088
3	13.76 11.76	${ }^{0.23}$	087 084
3.5	1050	0.26	0.84
4.	9.63	0.27	081
${ }_{5}^{5}$	8.82	0.29	080
${ }_{5}^{5}$	8.18	0.31	0.78
5	7.13	${ }_{0}^{0.36}$	0.77

Table 3 clearly shows the control available over the balance between precision and recall, and demonstrates the amount of result
trimming that can safely be applied for a desired level of recall. Even the most minimal trimming attempted shortened the results list by over 60% (compared to the initial minimum size of 106 results) yet only reduced average recall by 18 compared to the case where no
trimming was done.

5 CONCLUSIONS AND FUTURE WORK
During the execution of this project, we have identified a number of During the execution of this projc:
directions to pursuce in the future:
Evaluate in an Active Learning scenario: Foremost in our future goals is to perform an exhaustive cvaluation of the InfoTracker prototype in a scenario that takes advantage of Active Learning to identify and mark boilerplate content while the system is in use.
Incorporate time stamps: The current approach Incorporate time stamps: The current approach does not take the
temporal aspect of document authoring and reuse into account temporal aspect of document authoring and reuse into account
when determining pedigrec. Therefore, if a query document shares a source with a historical document, then both the source and the sibling document are likely to be returned in the list of results.
These false-positive results can be reduecd by These false-positive results can be reduced by considering the
dates that the returned documents are authored, possibly presenting the results hierarchically, or only retuming either the youngest ing he results hier
or oldest sources.
Overlap size: Another indication of the actual structure of the document pedigree is available in the content of the overlapping sec-
tions themselves. For example, if document C contains content
taken directly from document B, which was originally taken from document A, there is a chance that the overlapping section that C
shares with B will be larger than the overlapping section found to be common to C and A. Indeed, it is highly likely that the overlapping content between C and A is a proper subset of the over-
laps shared between C and B. In-depth analysis of the similarities laps shared between C and B. In-depth analysis of the similaritics
between overlapping content shared between multiple documents may reveal more intricacies of the document pedigree.
Alternative outlicr definitions: The characteristics of the flat tails of each results list may more closely fit a certain type of distri-
bution. If so, a more complex outlicr detection mettod (such as Grubbs' Test for Outliers [5D may be able to determine a threshold for result trimming that improves precision.
We have presented an approach to document indexing and search illary content is present. We have compared this approach to the ilary content is present. We have compared this approach to the
eommon vectorspace approach used frequently for information retrieval tasks, showing that our approach is better able to manage
the presence of ancillary content. InfoTracker makes use of efficient disk-based data structures that promise to scale well with large corpora that do not fit in memory; however, a thorough evaluation of the scalability of Info Tracker is still a topic for future investigation. Evaluation on the proposal data set revealed that a great deal of
control is available over the precision/recall trade-off. This can be incorporated into tools in the future to adapt to the needs at hand. For example, applications dealing with the dissemination of potentially classificd content will require a high degree of recall, while an apavoid false positives with higher precision.

REFERENCES
(12) Tumillin. Wectaic: hitp://wwwiunntin com, Junc 2008

(4) Panto
 ACM. 46(2), 230-280. (March 1999).

${ }^{161} \frac{\text { san }}{\text { Tin }}$

181

(19)

Cemter ISSNOM5). pp.
[101 Esko Ukkonce, On-line

Related Work

Suffix Tree Document Models

Fuzzy Fingerprints

Hoad \& Zobel's Fingerprints

Solution

Ignore the ancillary content

determines the degree of extremity required of the outliers. N can be used to shift the balance between precision and recall. For example,
the full 116 data points of the results in Table 2 have a lower quartile of $1.837\left(Q_{1}\right)$ and an upper quartile of $47.250\left(Q_{3}\right)$, indicating that 29 data points have scores under 1.837 and 87 data points have scores the top seven results are retained.
The expeciment described in Section 4.2 was run with varying val-
ues of N from the range $[0-61$. Low values of N represent very conwes of N from the range [0-6]. Low values of N represent very conservative estimates of the distribution of unrelated documents, and
sets a low threshold for outlier. Each full-unit increment increases sets a low threshold for outliers. Each full-unit increment increases
the threshold by an amount equal to the inter-quartile range, trimming the query results more aggressively. The full test corpus of 38 query documents was run on each successive value of N and the average number of results, average precision, and average recall are
fecorded in Table 3 .

Table 3. Precision/Recall saxisisis for the pedigree detection experiment.

N	Ressit Conit	Precison	Recall
NoTrimming	11253	0.03	098
S	40.95	0.11	097
0.5	28.71	0.14	093
,	22.29	0.16	091
15	18.92 1581 1585	0.19	0,90
${ }^{2} 5$	15.81	0.21	${ }_{0}^{088}$
25	13.47	0.23	0.87
${ }_{3}^{3}$	11.76	0.24	0.84
${ }_{4}^{3.5}$	1050	0.26	0.84
4.5	8.82	${ }_{0.29}$	0.80
5	8.18	0.31	0.78
55	755	0.33	0.78

 ween precision and recall, and demonstrates the amount of result the most minimal trimming attempted shortened the results list by over 60% (compared to the initial minimum size of 106 results) yet only reduced average recall by 1% compared to the case where no trimming was done.

5 CONCLUSIONS AND FUTURE WORK

During the execution of this project, we have identified a number of directions to pursuc in the future:
Evaluate in an Active Learning seenario: Foremost in our future prototype in a scenario that takes advantage of Active Learning to identify and mark boilerplate content while the system is in usc. Incorporate time stamps: The current approach does not take the temporal aspect of document authoring and reuse into account
when determining pectigrec. Therefore, if a query document shares a source with a historical document, then both the source and the sibling document are likely to be returned in the list of results. These false-positive results can be reduced by considering the
dates that the returned documents are authored, possibly presenting the results hierarchically, or only returning either the youngest or oldest sources.
Overlap size: Another indication of the actual structure of the document pedigrec is available in the content of the overlapping sec-
tions themselves. For example, if document C contains content
taken directly from document B, which was originally taken from document A, there is a chance that the overlapping section that C
shares with B will be larger than the overlapping section found to be common to C and A. Inded the it is highly likecly that the overlapping content between C and A is a proper subset of the overlaps shared between C and B. In-depth analysis of the simil aritics may reveal more ing content shared between multiple documents Iternative outlier definititiose the document pedigree.
of each results list may more The characterisics of the fiat tails bution. If so, a more complex outlicr detection method (such as Grubbs' Test for Outliers [5] may be able to determine a threshold for result trimming that improves precision.
We have presented an approach to document indexing and search hat enables the detection of document pedigree when substantial ancillary content is present. We have compared this approach to the
common vector-space approach used frequently for information retrieval tasks, showing that our approach is better able to manage disk-based data ascillary content. InfoTracker makes use of efficien pora that do not fit in memory; however, a thorough evaluation of the calability of Info Tracker is still a topic for future investigation. Evaluation on the proposal data set revealed that a great deal of
control is available over the precision/recall trade-off. This can be incorporated into tools in the future to adapt to the needs at hand. For example, applications dealing with the dissemination of potentially classified content will require a high degree of recall, while an application where the emphasis is on immedia
avoid false positives with higher precision.

REFERENCES

How?

How? Use Contrasting Corpora

Open Content
Sensitive Content

Algorithm

Index Both Corpora with one Suffix Tree

Widely-Used/Common Text

c1="their hotel rooms"
c2="their hideout"

Sensitive Documents

s1="hotel as their hideout"

Suffixes: c1
rooms
hotel rooms
their hotel rooms
Suffixes: c2
hideout
their hideout
Suffixes: s1
hideout
their hideout as their hideout hotel as their hideout

Text Unique to Sensitive Documents

Search for a document

Query: "Hotel rooms as their hideout"
Unique to
Sensitive Documents

Search for a document

Query: "Hotel rooms as their hideout"

Open: "Hotel rooms"

Search for a document

Query: "Hotel rooms as their hideout"

Open: "Hotel rooms"
Open: "rooms"

Search for a document

Query: "Hotel rooms as their hideout"

Open: "Hotel rooms"
Open: "rooms"
Sensitive:
"as their hideout"

Search for a document

Query: "Hotel rooms as their hideout"

Open: "Hotel rooms"
Open: "rooms"
Sensitive:
"as their hideout"
Open:
"their hideout"

Search for a document

Query: "Hotel rooms as their hideout"

Open: "Hotel rooms"
Open: "rooms"

Sensitive:
Open:
"as heir hideout"
"their hideout"

Filter the resulting string overlaps

Aligned Character Strings

Query Doc.
Sens. Overlap
Open Overlap
Resulting Overlap(s) \square

Too Short

Algorithm >

Algorithm > Ranking

Overlap-based Ranking

Northwest coast of the island of Sumatra. This earthquake is the second strongest earthquake

The Indonesian island of Sumatra
Kubu people
ıquake - Wikipedia, the free encyclopedia - Mozilla Firefox
tory Bookmarks Tools Help
.org/wiki/2 B $|>|$ G•Google
of India, and the western coast of Sri
also suffered substantial impacts. Also
ice alone is no guarantee of safety; lia was hit harder than Bangladesh e being much farther away.
use of the distances involved, the mi took anywhere from fifteen minutes en hours (for Somalia) to reach the is coastlines. ${ }^{[33][34]}$ The northern ns of the Indonesian island of Sumatre hit very quickly, while Sri Lanka and the :oast of India were hit roughly nutes to two hours later. Thailand was truck about two hours later despite closer to the epicentre, because the

On the moming of December 26, 2004 a magnitude 9.3 earthquake struck off the Northwest coast of the Indonesian island of Sumatra. The earthquake resulted from complex slip on the fault where the oceanic portion of the Indian Plate slides under Sumatra, part of the Eurasian Plate. The earthquake deformed the ocean floor, pushing the overlying water up into a tsunami wave. The tsunami wave devastated nearby areas where the wave may have been as high as 25 meters (80 feet) tall. The sudden vertical rise of the seabed by several meters during the earthquake displaced massive volumes of water, resulting in a tsunami that struck the coasts of the Indian Ocean.

Radar satellites recorded the heights of tsunami waves in deep water: at two hours after the earthquake, the maximum height was $60 \mathrm{~cm}(2 \mathrm{ft})$. These are the first such observations ever made. However, these observations could not have been used to provide a waming, because the satellites were not intended for that purpose and the data took hours to analyze.

SITUATION

PACOM organized a peace-time operation to provide assistance to the victims of the Boxing Day tsumami in the India Ocean. While this was not a war-time operation, there remained the vossibilitv of terrorist activities bv conservative radical org anizations.

Overlap-based Ranking

On the moming of December 26, 2004 a magnitude 9.3 earthquake struck off the Northwest coast of the Indonesian island of Sumatra. The earthquake resulted from

cy, while Sri Lanka and the were hit roughly hours later. Thailand was truck about two hours later despite closer to the epicentre, because the

SITUATION

PACOM organized a peace-time operation to provide assistance to the victims of the Boxing Day tsunami in the India Ocean. While this was not a war-time operation, there的国: remain

Overlap Frequency for Ranking

A:
the Indonesian island of Sumatra.
B: Northwest coast of the
C:
the Indonesian island of Sumatra.

1
unique text
lower frequency
Greater impact

common text
higher frequency
Less impact

Evaluation

InfoTracker was compared to Vector Space

Cosine Similarity

TF-IDF weighted vectors

No stop words

Data Set

Open Content

Sensitive Content

Data Set

272 SBIR proposals

234 historical proposals

38 query proposals

Oracle

Evaluation > Results

InfoTracker improved precision / recall

Algorithm	Precision	Recall
Vector Space	0.119	0.764
InfoTracker	0.167	0.913

Contributions / Future Work

Ancillary content can be managed

Contrasting corpora

Manual/actively learned tags

Detecting document sections

(re)Evaluate on Open data

Compare with differing corpora

The Linux Doc. Project

Algorithmic Improvements

Active Learning

Document time stamps

Overlap size / encapsulation

Questions?

Calculating Precision / Recall

Rank	Score	File
1	6289.995	Document-92
2	3206.34	Document-21
3	1630.607	Document-13
4	1366.318	Document-46
5	1157.704	Document-1
6	1103.442	Document-43
7	624.2379	Document-114
8	327.5333	Document-67
9	273.6506	Document-74
10	263.0365	Document-48
11	244.4071	Document-10
12	238.4346	Document-113
13	207.32	Document-101
14	134.9912	Document-58
15	131.5204	Document-12
16	118.6787	Document-7
17	97.52703	Document-37
18	89.8972	Document-9
19	89.50462	Document-27
20	81.49963	Document-50
\ldots	\ldots	...

Calculating Precision / Recall

Consider the top 23 results.

(to allow for perfect recall)

Rank	Score	File
1	6289.995	Document-92
2	3206.34	Document-21
3	1630.607	Document-13
4	1366.318	Document-46
5	1157.704	Document-1
6	1103.442	Document-43
7	624.2379	Document-114
8	327.5333	Document-67
9	273.6506	Document-74
10	263.0365	Document-48
11	244.4071	Document-10
12	238.4346	Document-113
13	207.32	Document-101
14	1349919	Document-58

Ranking Scores Plummet Quickly

Rank	Score	File
1	6289.995	Document-92
2	3206.34	Document-21
3	1630.607	Document-13
4	1366.318	Document-46
5	1157.704	Document-1
6	1103.442	Document-43
7	624.2379	Document-114
8	327.5333	Document-67
9	273.6506	Document-74
10	263.0365	Document-48
11	244.4071	Document-10
12	238.4346	Document-113
13	207.32	Document-101
14	134.9912	Document-58
15	131.5204	Document-12
16	118.6787	Document-7
17	97.52703	Document-37
18	89.8972	Document-9
19	89.50462	Document-27
20	81.49963	Document-50
\ldots	\ldots	‥

Trimming Results >

Ranking Scores Plummet Quickly

Trimming improves precision, retains recall

N	Result Count	Precision	Recall
No Trimming	162.53	0.03	0.98
0	40.95	0.11	0.97
0.5	28.71	0.14	0.93
1	22.29	0.16	0.91
1.5	18.92	0.19	0.90
2	15.81	0.21	0.88
2.5	13.47	0.23	0.87
3	11.76	0.24	0.84
3.5	10.50	0.26	0.84
4	9.63	0.27	0.81
4.5	8.82	0.29	0.80
5	8.18	0.31	0.78
5.5	7.55	0.33	0.78
6	7.13	0.36	0.77

