

Features for Modelling Characteristics of Conversations

Gunnar Eriksson Jussi Karlgren 2012-09-20

Gavagai AB

Stockholm, Sweden

• what content in conversations?

- what content in conversations?
- what behaviour within conversations?

- what content in conversations?
- what behaviour within conversations?
- what types of conversations?

Conversation content words and short phrases

Conversation content
words and short phrases

Conversation behaviour
turn-taking – the flow of interaction

Conversation content words and short phrases

Conversation behaviour turn-taking – the flow of interaction

Conversation type number of participants and conversation length

Author profile

Train a maximum entropy classifier with all features from all conversations the author took part in. Some exceptions:

- do not use features with occurrence with only one author.
- remove feature frequency information.

Extracting lexical features

Lexical features

Lexical features

- normalisation and tokenisation
- tokens and token bigrams
- bag of tokens + bigrams for every participant

Lexical features

- normalisation and tokenisation
- tokens and token bigrams
- bag of tokens + bigrams for every participant
- generalize mentions of chat nick-names of other conversation partakers to OtherName.
- generalize mentions of nick-name of the "speaker" to **SelfName**.

More than one source to the content of a conversation!

SLEX The things you utter in the conversation.

OLEX The things others utter in the conversation.

More than one source to the content of a conversation!

SLEX The things you utter in the conversation.

OLEX The things others utter in the conversation.

Add the two sets of features to every author profile.

In two ways: Concatenation (SLEX + OLEX) or union (CLEX).

Combination of lexical sources

Features types used	Precision	Recall	F (β=1)
submitted	0.84	0.89	0.87
SLEX	0.21	0.84	0.33
OLEX	0.27	0.80	0.35
OLEX+SLEX	0.43	0.85	0.57
CLEX	0.48	0.72	0.58
CLEX + CONV features	0.56	0.55	0.55

Conversation type, CTYPE

Conversation type, CTYPE

```
Monologue
```

0 – 1 participant

Dialogue

2 participants

Group

> 2 participants

Extracting conversation features

Conversation length, LTYPE

Conversation length, LTYPE

Feature	# of utterances
fail	0 – 1
handshake	2 – 7
prelude	8 – 25
brief	26 – 50
discourse	51 – 100
ldiscourse	101 – 160
vldiscourse	161 –

Adding ctype to ltype

Example

 $\begin{aligned} & \text{prelude}_{\text{mono}}, \ \text{prelude}_{\text{dia}}, \ \text{or} \ \text{prelude}_{\text{group}} \\ & \text{brief}_{\text{mono}}, \ \text{brief}_{\text{dia}}, \ \text{or} \ \text{brief}_{\text{group}} \end{aligned}$

...

Turn-taking behaviour, TTAKE

The flow of utterances within a conversation is modelled by turn-taking trigrams from each participant's perspective.

Turn-taking behaviour, TTAKE

The flow of utterances within a conversation is modelled by turn-taking trigrams from each participant's perspective.

Example						
	utterance 1	u2	u3	u4	u5	
participants	А	Α	В	А	В	

Example

A: Self–Self–Other, Self–Other–Self, Other–Self–Other, ...

B: Other-Other-Self, Other-Self-Other, Self-Other-Self, ...

Extracting conversation features

Adding ctype to ttake

Adding ctype to ttake

Example

 $A: Self-Self-Other_g, Self-Other_g-Self, Other_g-Self-Other_g, \dots \\$

B: Otherg-Otherg-Self, Otherg-Self-Otherg, Self-Otherg-Self,

...

Combining it all

Features types used	Precision	Recall	F (β=1)
S-OLEX+CTYPE+LTYPE+TTAKE	0.84	0.89	0.87
CTYPE+LTYPE+TTAKE	0.68	0.04	0.06
S-OLEX+CTYPE+LTYPE	0.90	0.90	0.90
S-OLEX+LTYPE+TTAKE	0.95	0.93	0.94
S-OLEX+CTYPE+TTAKE	0.97	0.97	0.97

Take home

- it takes two to tango use that!
- and even simplistic situational features helps!

Normalisation and tokenisation

All lower-case

- let all sequences of black characters delimited by white-space constitute a token.
- 2 let all initial and final sequences of punctuation characters be a token of its own.
- 3 add extra tokens from (some) tokens with internal black-space: $\mathsf{URL} \to \mathsf{URL} + \mathsf{URL} \ \mathsf{parts}.$

Identifying flagrant utterances

- 1 use the sexual predator classifier.
- classify all predator utterances in training material using only SLEX features.
- rank the utterances by the probability for the utterance "being a sexual predator".
- decide a flagrancy threshold.
- classify all utterances in test material as above.
- 2 pick all utterances above threshold.