

ITMO UNIVERSITY

Demystifying Psychographic Marketing

Multi-View Learning as a New Social Media User Profiling Standard

by Aleksandr Farseev

http://farseev.com

http://somin.ai

Multiple social networks describe user behavior from multiple views

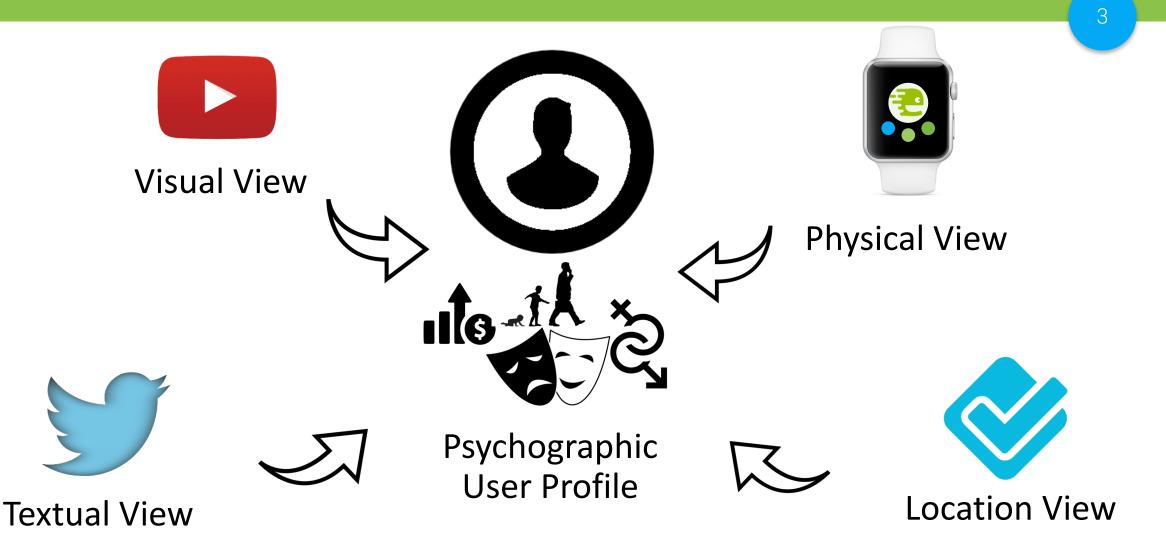
Some facts about social networks...

More than 50% of online-active adults use more than three social networks in their daily life*

*According Paw Research Internet Project's Social Media Update 2017 (www.pewinternet.org/fact-sheets/social-networking-fact-sheet/)

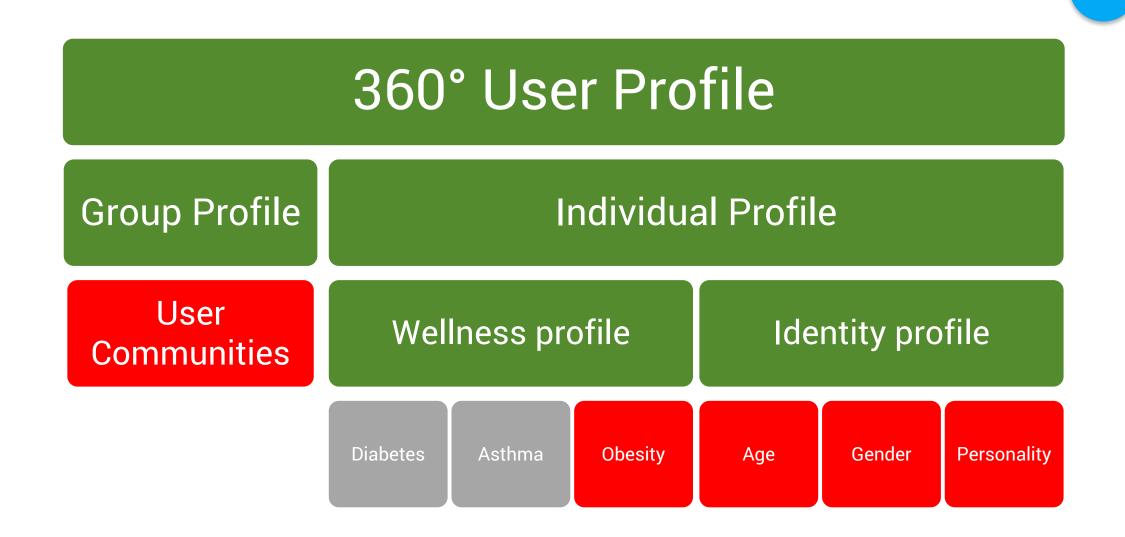
Different data modalities describe users from multiple views

Indeed, they are:



Psychographic profiling in our works

Those attributes that we've inferred

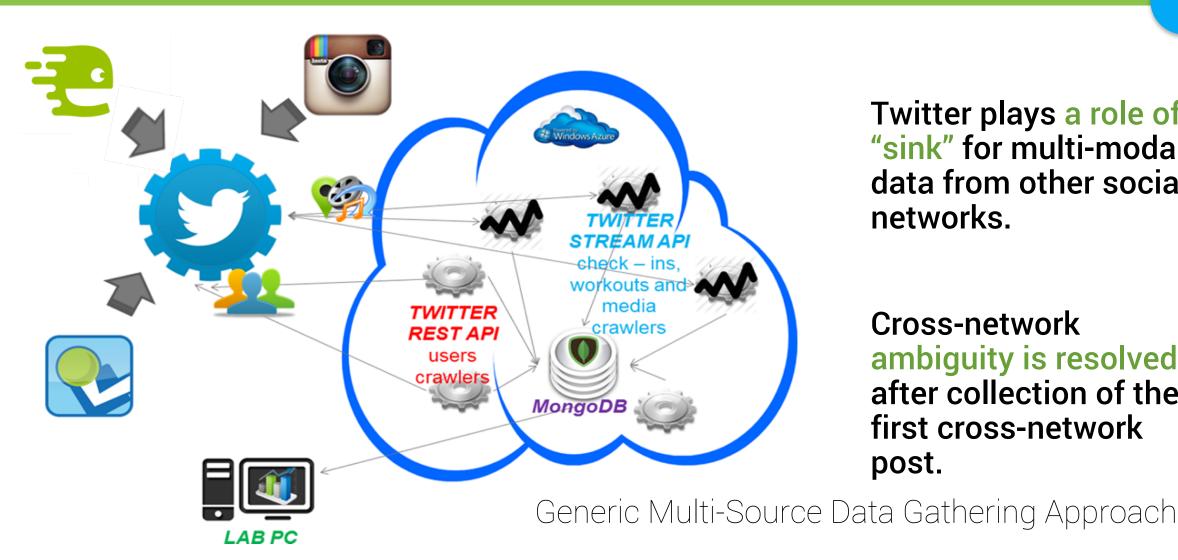


$\overleftrightarrow \to \diamondsuit$ Data for User Profiling

*A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a Big data study. ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.

Data Gathering And Simultaneous Cross-Network Account Mapping

About finding the same users in different social networks...



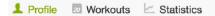
Twitter plays a role of a "sink" for multi-modal data from other social networks.

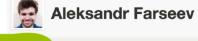
Cross-network ambiguity is resolved after collection of the first cross-network post.

Cross-Network Account Mapping: Example

How to grab Alex's personal data...

k endomondo





I just finished running 0.52 miles in 17m:34s with #Endomondo #endorphins

Cross-network post

Data Representation: Summary

All data types together

Linguistic features: LIWC; Latent Topics Heuristic features: Writing behavior

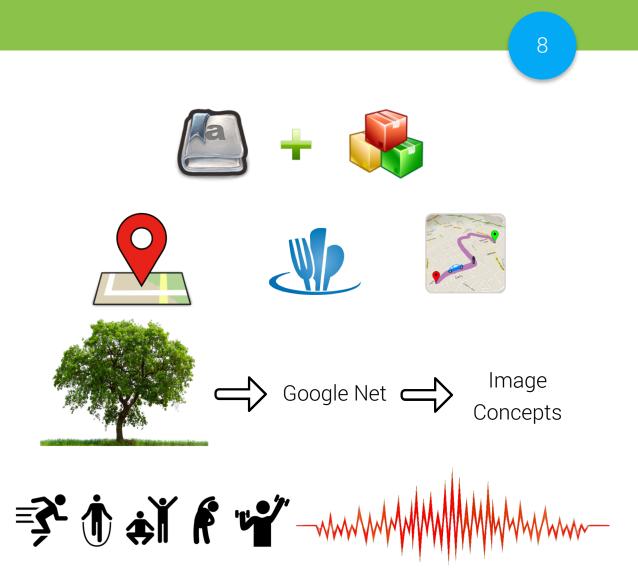
Location Features:

Location Semantics: Venue Category Distribution Mobility Features: Areas of Interest (AOI)

Image Features

Image Concept Distribution (Image Net)

Exercise statistics + sport types + spectrum



Our released large multi-source multi-modal datasets

9

NUS-SENSE http://nussense.azurewebsites.net

Location	#users	#tweets	#check-ins	#images	#check-ins
Worldwide	5,375	16,763,310	19,743	48,137	140,926

NUS-MSS http://nusmss.azurewebsites.net

Location	#users	#tweets	#check-ins	#images
Singapore	7,023	11,732,489	366,268	263,530
London	5,503	2,973,162	127,276	65,088
New York	7,957	5,263,630	304,493	230,752

Data was voluntarily publicly released by Twitter users and collected via official Twitter API Datasets are released in a form of features thus user privacy is not affected.

Two Large Multi-Source Social Media & Sensor Datasets

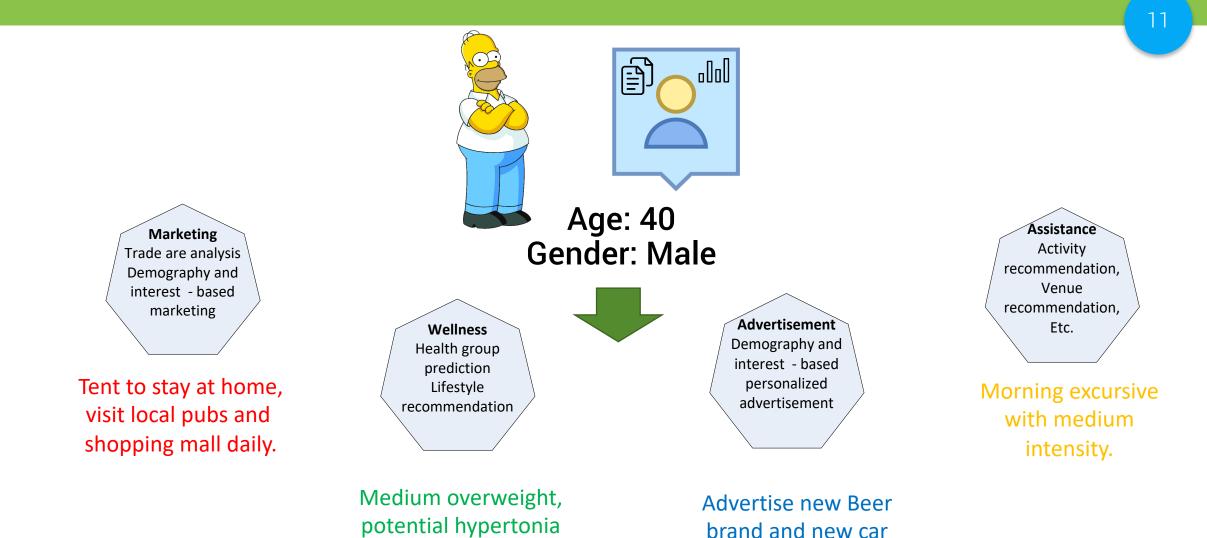
Individual Multi-View Learning Part I: Demographic Profiling

*A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a Big data study. ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.

On cross-domain importance of basic demographic attributes

and diabetes.

What we can do if we know Homer's age?

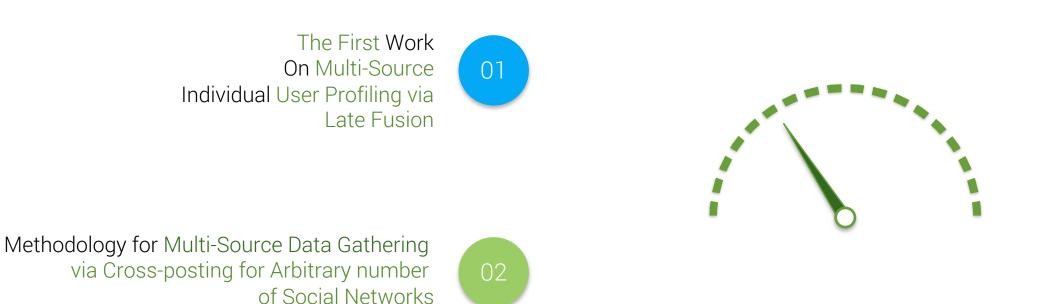


models.

Research Questions

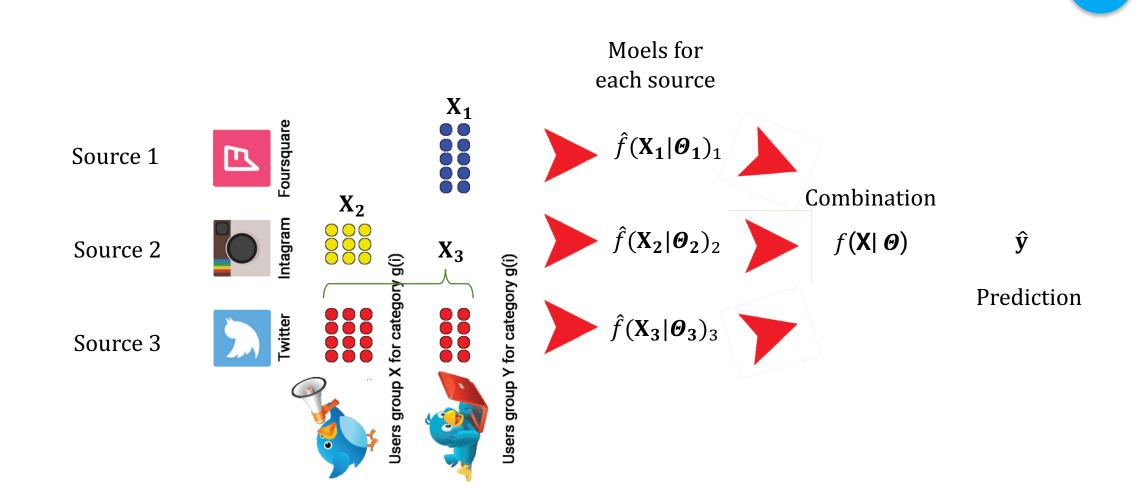
Is it possible to boost supervised machine learning for individual user profiling performance by incorporating multi-modal data from multiple social networks?

Contributions...



*A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a Big data study. ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.

Intuition behind late-fused multi-source learning



Age and Gender Prediction

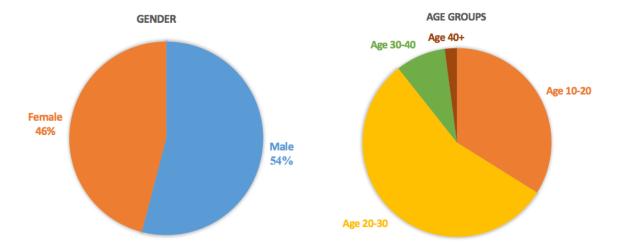
Running Random Forests With Random Restart



Age and Gender Ground Truth (NUS-MSS)

-	C
	0

Attribute	Train (Age was Estimated from Education Path)	Test (Real Age Mentions)					
Gender							
Male	2536	129					
Female	2155	93					
	Age Groups						
10-20	360	181					
20-30	589	28					
30-40	91	8					
40+	22	5					



Note: Age ground truth is small Solution: estimated age ground truth from users' Education and Occupation history

Age and Gender Prediction: Results

	Method	Gender	Age
		Single-Source	
	RF Location Cat. (Foursquare)	0.649	0.306
	RF LWIC Text(Twitter)	0.716	0.407
S	RF Heuristic Text(Twitter)	0.685	0.463
n	RF LDA 50 Text(Twitter)	0.788	0.357
atic	RF Image Con- cepts(Instagram)	0.784	0.366
<u> </u>		Multi-Source combinations	
dm	RF LDA + LIWC(Late Fusion)	0.784	0.426
Col	${ m RF}$ LDA + Heuristic(Late Fusion)	0.815	0.480
Ce	$\begin{array}{l} {\rm RF \ Heuristic} + {\rm LIWC \ (Late} \\ {\rm Fusion}) \end{array}$	0.730	0.421
D	RF All Text (Late Fusion)	0.815	0.425
So	RF Media + Location (Late Fusion)	0.802	0.352
Data Source Combinations	RF Text + Media (Late Fusion)	0.824	0.483
Ω	RF Text + Location (Late Fusion)	0.743	0.401
		All sources together	
	RF Early fusion for all fea- tures	0.707	0.370
	RF Multi-source (Late Fu-	0.878	0.509

sion)

			[]
	Method	Gender	Age
	SVM Location Cat. (Foursquare)	0.581	0.251
	SVM LWIC Text(Twitter)	0.590	0.254
	SVM Heuristic Text(Twitter)	0.589	0.290
es	SVM LDA 50 Text(Twitter)	0.595	0.260
Baselines	SVM Image Con- cepts(Instagram)	0.581	0.254
Ba	NB Location Cat. (Foursquare)	0.575	0.185
	NB LWIC Text(Twitter)	0.640	0.392
	NB Heuristic Text(Twitter)	0.599	0.394
	NB LDA 50 Text(Twitter)	0.653	0.343
	NB Image Con- cepts(Instagram)	0.631	0.233
7		Statistical Analysis	
2	Weighted Cohen's Kappa	$\kappa_w = 0.745, p < 0.01$	$\kappa_w = 0.297, p < 0.01$

17

*A. Farseev, N. Liqiang, M. Akbari, and T.-S. Chua. Harvesting multiple sources for user profile learning: a Big data study. ACM International Conference on Multimedia Retrieval (ICMR). China. June 23-26, 2015.

C+C Individual Multi-View User Profiling Part II: Wellness Profiling

*A. Farseev, A., & Chua, T. S. (2017). Tweetfit: Fusing multiple social media and sensor data for wellness profile learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI.

Weight Problems Consequences

It is not just about looking not fit...

19

Weight Problems Consequences

- All-causes of death (mortality)
- High blood pressure (Hypertension)
- High / Low HDL cholesterol
- Type 2 diabetes
- Coronary heart disease
- Stroke

- Gallbladder disease
- Osteoarthritis
- Some cancers
- Mental illness such as clinical depression
- Body pain

*Health effect of overweight and obesity. Center of disease control and prevention. http://www.cdc.gov/healthyweight/effects/

Question One

sensor data?

Research Questions

2

Question Two What is the contribution of sensor data towards BMI category and "BMI Trend" inference?

Is it possible to improve the

performance of BMI category and "BMI Trend" inference by

fusing multiple social media and

Question Three

Is it possible to improve the performance of BMI category and "BMI Trend" inference by incorporating inter-category relatedness into the learning process?

Contributions

For Supervised Joint Learning From Multi-Source Multi-Modal Incomplete Data

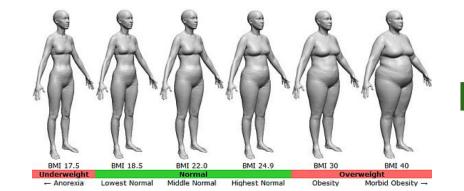
First Social-Sensor Dataset NUS-SENSE

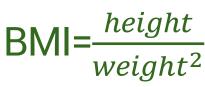
*Farseev, A., & Chua, T. S. (2017). Tweet can be Fit: Integrating Data from Wearable Sensors and Multiple Social Networks for Wellness Profile Learning. ACM Transactions on Information Systems (TOIS).

Unite Social Media And Wearable Sensors For Physical Attributes Inference

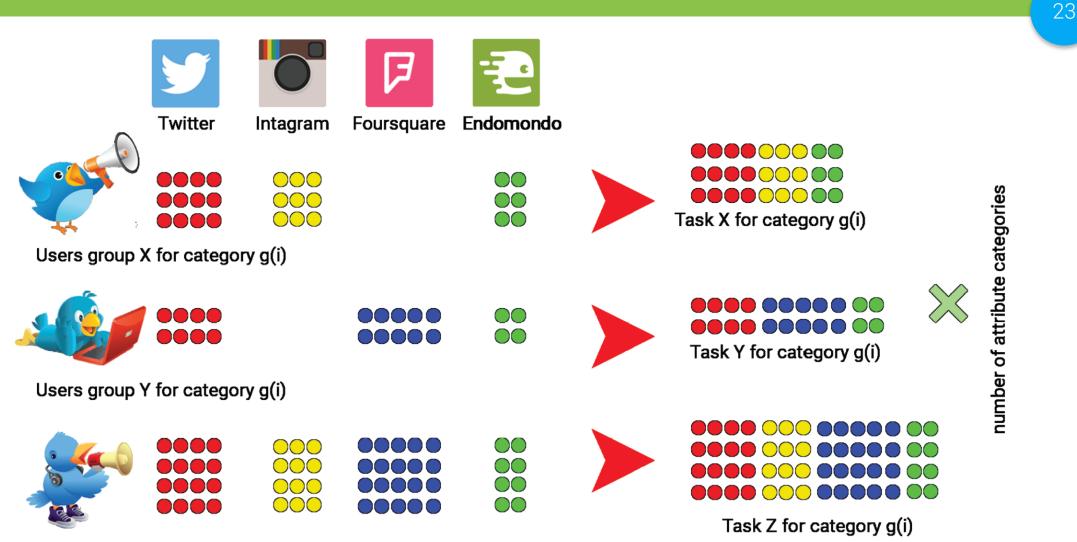
Just tweet to be fit....

Weight Fluctuation Trend (BMI Trend)





Multi-Source Multi-Task Learning



Users group Z for category g(i)

Doing Predictions via Multi-Source Multi-Task Learning

Notations

Notation	Description
N	Number of exclusively labeled data samples
$S(\geq 2)$	Number of data sources (data modalities)
$G(\geq 1)$	Number of inference attribute categories (for BMI category, $G=8;$ for "BMI Trend", $G=1)$
g	Inference attribute category (class). For example, "Obese" or "Normal" in case of BMI category attribute.
Т	Number of multi-task learning Tasks
t	A multi-task learning Task
D_t	Dimensionality (feature vector dimension) of the task t
D_{max}	Maximum possible dimensionality of a task
N_t	Number of data samples of the task t
\hat{T}	Number of different existing combinations of sources
$f_t(\mathbf{x}_j^t; \mathbf{w}^t)$	Linear prediction model for the jth data sample of task t
$\mathbf{w}^t \in \mathbb{R}^{D_t}$	Model parameter vector of task t
W	All model parameters, denoted as linear mapping block matrix
$\Gamma(\mathbf{W})$	Objective function
$\Psi(\mathbf{X},\mathbf{W},\mathbf{Y})$	Loss function
$\Upsilon(\mathbf{W})$	Sparsity regularizer
$\Omega(\mathbf{W})$	Inter-category smoothness regularizer
$\rho(s, f)$	Index function that denotes all the model parameters of the fth feature from the sth source
$\xi(t,g)$	Index function that picks up the model parameter (\mathbf{w}_{g+1}^t) , which corresponds to the attribute category $g+1$ (adjacent to g)

Generic Multi-View Hybrid Fusion Approach 太

$$\label{eq:Gamma} \begin{split} \Gamma(\mathbf{W}) = \mathop{\arg\min}\limits_{\mathbf{W}} \, \Psi(\mathbf{X},\mathbf{W},\mathbf{Y}) + \lambda \Upsilon(\mathbf{W}) + \mu \Omega(\mathbf{W}), \end{split}$$

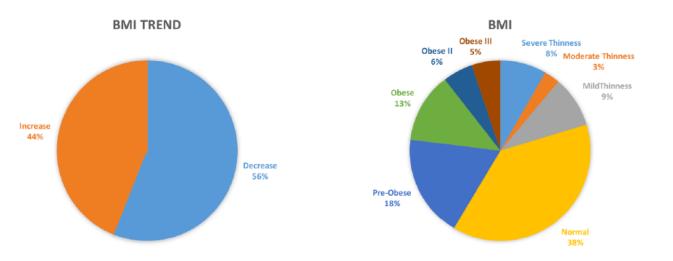
$$\Psi(\mathbf{X}, \mathbf{W}, \mathbf{Y}) = \frac{1}{T} \sum_{t=1}^{T} \frac{1}{N_t} \sum_{i=1}^{N_t} \log(1 + e^{-y_i^t f_t(\mathbf{x}_i^t; \mathbf{w}^t)})$$

$$\Upsilon(\mathbf{W}) = \sum_{s=1}^{S} \sum_{f=1}^{F_s} \left\| \mathbf{w}_{\rho(s,f)} \right\|$$

Inter-Category Smoothness Regularization $\mathbf{\hat{\Omega}}(\mathbf{W}) = \sum_{t=1}^{\hat{T}} \sum_{g \in C_{D_t}} \kappa_{g,\xi(t,g)} \left\| \mathbf{w}_g^t - \mathbf{w}_{\xi(t,g)}^t \right\|^2$

BMI and BMI Trend Ground Truth (NUS-SENSE)

Attribute	Train	Test					
BMI Trend							
Decrease	67	16					
Increase	53	11					
BMI							
Severe Thinness	71	16					
Moderate Thinness	24	6					
Mild Thinness	80	18					
Normal	331	76					
Pre Obese	157	36					
Obese I	105	25					
Obese II	47	11					
Obese III	45	9					



Note: data for some categories is not large. Solution: applied SMOTE oversampling

BMI Category and BMI Trend Prediction: Results (1)

Data Source Combinations

Data Source Combination	BMI category	prediction
Data Source Combination	R_{Mac}/P_{Mac}	$F_{1,Mac}$
Visual	0.049/0.188	0.077
Venue Semantics & Mobility	0.194/0.107	0.137
Sensors	0.153/0.158	0.155
Textual	0.229/0.146	0.178
Visual + Sensors	0.174/0.201	0.186
Visual + Text	0.126/0.245	0.166
Visual + Venue Semantics & Mobility	0.161/0.154	0.157
Text + Venue Semantics & Mobility	0.160/0.204	0.179
Sensors + Venue Semantics & Mobility	0.163/0.233	0.191
$\underline{\mathbf{Sensors}} + \underline{\mathbf{Text}}$	0.148/0.270	0.191
Visual + Text + Venue Semantics & Mobility	0.126/0.233	0.163
Sensors + Text + Visual	0.137/0.207	0.164
$Sensors + Text + Venue \ Semantics \ \& \ Mobility$	0.182/0.236	0.205
${\bf Sensors} + {\bf Venue} \ {\bf Semantics} \ \& \ {\bf Mobility} + {\bf Visual}$	0.180/0.283	0.221
All Data Sources	0.214/0.292	0.246

Other Baselines

Method	BMI cate	egory	"BMI Trend"		
Method	R_{Mac}/P_{Mac}	$F_{1,Mac}$	R_{Mac}/P_{Mac}	$F_{1,Mac}$	
MSESHC [47]	0.141/0.145	0.142	0.634/0.655	0.644	
Random Forest	0.135/0.226	0.169	0.333/0.863	0.480	
iMSF [160]	0.171/0.174	0.172	0.649/0.649	0.649	
$aMTFL_2$ [85]	0.162/0.215	0.184	0.700/0.722	0.710	
TweetFit	0.222/0.202	0.211	0.705/0.732	0.718	
M ² WP	0.221/0.229	0.225	Ω is not applicable		

8 BMI Categories: Thinness I, II, III; Normal; Obese I, II, III, IV 2 BMI Trends: Increase; Decrease

Source Importance Analysis: Feature level

Different feature types

Feature type	S. Th.	M. Th.	Md. Th.	Nrm.	P-Ob.	Ob. I	Ob. II	Ob. III
Latent topics	2	5	0	0	1	2	4	1
Lexicon	4	3	3	1	0	2	1	0
Writing style	2	1	1	1	0	2	1	3
Image con.	25	5	4	1	3	7	9	4
Venue sem.	19	5	1	2	11	5	11	2
Mob. & Tmp.	3	4	3	1	2	4	4	2
Work. sem.	1	0	1	0	1	2	2	2
Freq. domain	15	8	19	10	18	17	25	13
Work. stat.	1	2	2	1	1	2	2	3

1. Text features are less useful as compared to others (consistent with cross-source experiment).

2. Image features are more helpful in distinguishing weight problems (abnormal BMI categories).

3. Venue categories (semantics) are more powerful for the whole BMI scale as compared to geographical mobility patterns.

4. Temporal workout features, are the most useful and absolutely necessary, while the type of exercise as well as exercise statistics play auxiliary roles.

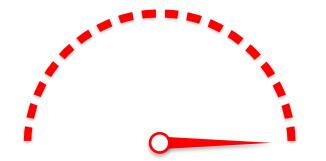
いう에 User Profiling Analytics

Research Questions

Question One

What is the relation between different data modalities, data sources, and individual user attributes?

Contributions



First study on Cross-Modal Statistical Analysis of Users from Multiple Social Networks

*Farseev, A., & Chua, T. S. (2017). Tweet can be Fit: Integrating Data from Wearable Sensors and Multiple Social Networks for Wellness Profile Learning. ACM Transactions on Information Systems (TOIS).

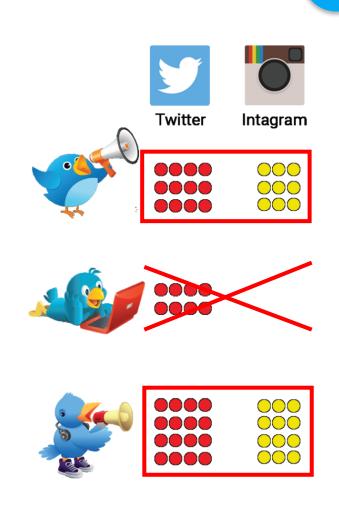
Pearson Correlation to Visualize Significant Data Relationships

31

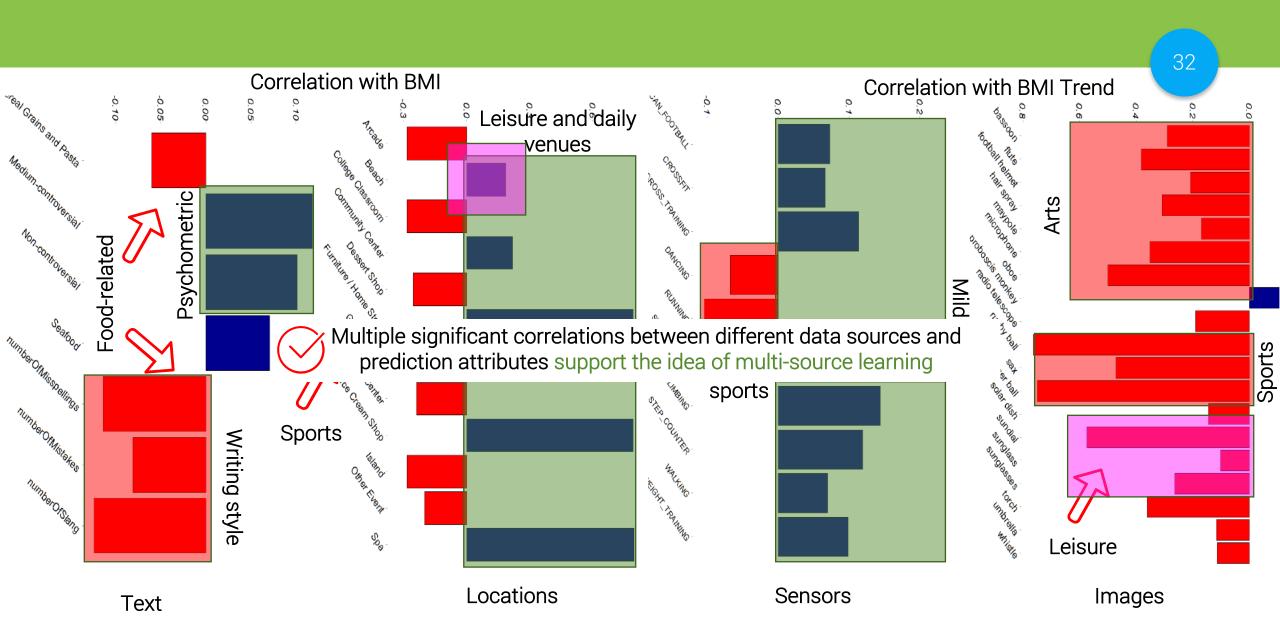
Sample correlation coefficient r – an estimate of the unknown correlation coefficient for a representative sample of size n:

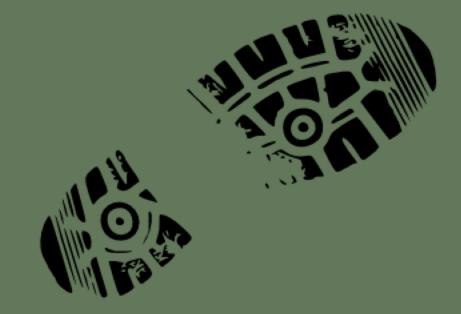
$$r = \frac{Cov(x,y)}{\sqrt{Var(x)Var(y)}} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}},$$

where x_i, y_i are i-th population samples and $\overline{x}, \overline{y}$ are the population means.



Individual Profile Analytics: Correlation with individual attributes





Future Of User Profiling

Future of User Profiling

User profiling to be approached from Data and Modeling Perspectives

Future of User Profiling

Application Perspective		M. Learning Perspective			Data Perspective			
Domain- Specific Profiling	Content Actionability	Deep Learning Learning			Video Streams	Mobility Data	Social Interactions	Asian Languages

What is Psychographics?

An example of demographic profiling

Customer Segment: Grand Parents Age: 70+ Gender: Male Marital Status: Married Financial Status: Affluent

Expected Segment Needs: Pension, healthcare, legacy

However, not all 70 Years old are the same!

Customer Segment: Grand Parents Age: 71 Gender: Male Marital Status: Married Financial Status: Affluent

Segment Needs: Staff Retention, legal representation, walls

II Think beyond demographic, connect through psychographic

– Loreal I

Marketers need to immerse themselves and their teams in the various behaviors to find the right insight that could trigger an action

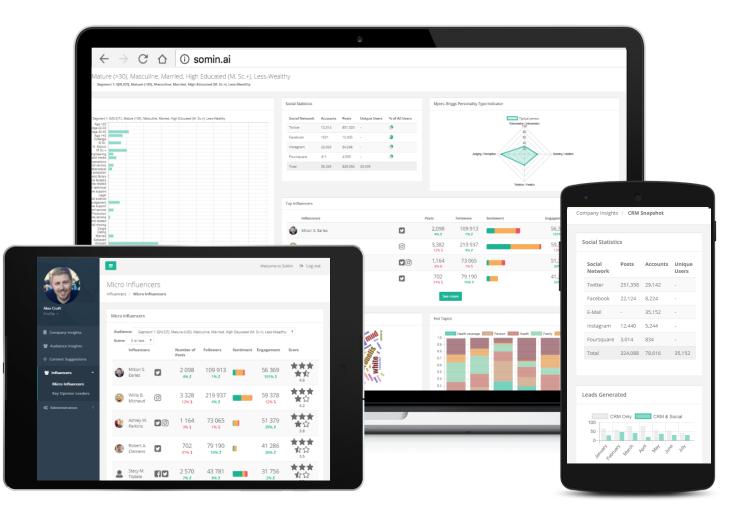
> Interactive Magazine 8 June 2018

What is Psychographics?

A consumer psychographic is a profile of a potential consumer based on interests, activities and personality. It is a snapshot into a consumer's lifestyle often used to quickly identify potential customers.

Companies then can use this information to create and implement highly targeted advertising and marketing campaigns

Matching Customer Segments with Messages to inspire the action



Profiling API for Researchers: http://dev.somin.ai

Case Studies

Psycho-Emotional Trait Prediction for Career Planning Portal more...

Micro-Influencer Marketing Campaign for an International Restaurant Brand more...

Al-Driven Social Media Campaigns for on of the Asia's Leading Mega Gym

more...

Thank You

Questions?