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Introduction
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• Multilingual text detoxification
• Revising toxic messages/comments to neutralize their toxicity while keeping the essence of 

the message intact (for multiple languages)

• Toxicity
• The use of curse words, insults, hate speech, cyberbullying, or trolling and contributing to an 

unhealthy online environment [5]

• Example
• I hate free speech it is shit ---> I hate free speech it is not good

• Applications
• Social media platforms can replace toxic content with non-toxic versions
• This allows the message to be conveyed without blocking it entirely due to toxicity

Languages: English, Russian, Ukrainian, Hindi, Chinese, Arabic, German, Amharic, Spanish



Challenge task

4

• Multilingual text detoxification (TextDetox) by PAN Lab
• 2 with parallel corpora: English, Russian
• 7 with toxic text only: Ukrainian, Hindi, Chinese, Arabic, German, Amharic, 

Spanish
• Challenge: 
• To detoxify text while keep its content intact

• Evaluation 
• Mode: Automatic and manual
• Metrics: Style transfer accuracy, content preservation, fluency



Related Work
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• Jigsaw/Conversation AI team
• Toxic comment classification challenge 2 in 2018
• Unintended bias in toxicity classification challenge 3 in 2019
• Multilingual Toxic Comment Classification Challenge 4 in 2021

• SemEval
• SemEval-2019 Task 6 (toxicity detection)
• SemEval-2020 Task 12 (toxic content identification and categorization) 
• SemEval-2021 (Toxicity span detection)

• Multimedia Automatic Misogyny Identification (MAMI) in 2022
• Identifying misogynous memes (text and images)

• RUSSE-2022 focused solely on detoxifying Russian texts [22]
• Toxicity detection using deep sequence models i.e., LSTM [15], utilization of embedding models [16], and incorporation of context 

[17] in the detection of toxic texts.
• Used pretrained seq2seq transformer for text detoxification [18]
• Point-wise corrections with seq2seq models to improve detoxified text fluency and style [9]



Proposed Approach
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Supervised module

• EN
• BART model
• ROUGE measures: ROUGE-1, ROUGE-2 and ROUGE-L

• RU
• T5 (Text-to-Text Transfer Transformer)  - EN
• Exponentially weighted moving average (EWMA)

Finetuned on parallel corpora
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Unsupervised module

• Toxic words identification
o Detect toxic words using log-odds ratio and hashing
o Detected toxic words masked based on a threshold
o Log-odds word frequency in toxic vs. neutral texts.
o Filter toxic words list on word length

Toxic words masking
o Mask placement with linguistic patterns
o Curse words at start/end filtered
o Others replaced through language model
o Cumulate masked words to one

8



Unsupervised module

• Mask Prediction
o Used XLM-RoBERTa model, pretrained on 100 languages
o The model predicts 15% randomely masked words
o For ultiple masks, it generates multiple possibilities (3n combinations).
o Chose XLM-RoBERTa for its bidirectional sentence understanding, unlike RNNs or GPT.

• Sentence Similarity
o Generate sentence embeddings
o Semantic similarity computed for pairs of toxic, neutral sentences
o Sentence with highest dissimilarity to toxic sentence is chosen 
o The model utilizes a Siamese network with cosine similarity loss for similarity measurement
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Training (Fine-tuning supervised 
module)

Training and validation loss of 
the supervised models (BART 
for EN) and (T5 for RU)
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Example
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Results
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Manual and automatic scores of our proposed approach for individual languages and their average. The 
evaluation is based on removing toxicity, style transfer, accuracy, content preservation and fluency



Limitations
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• Exponentially weighted moving average (EWMA) was not an appropriate 
choice for this task

• The toxic text samples for other languages could be used with few-shot 
learning

• Our approach didn't explicit attempt to determine the content/message in the 
toxic text

• The unsupervised approach for all 7 languages could be separated for 
languages with shared roots



Conclusion and limitations
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• Text detoxification is a challenging task depending diverse presence of toxicity and its 
detoxified versions

• A hybrid approach for text detoxification is a plausible direction however it needs 
more ground truth for higher accuracy

• Our proposed model received 0.315 score and can be improved by addressing the 
limitations highlighted

• Using multilingual embeddings and transfer learning is not explored for this task



Methods Hub
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This method along with many other interesting 
methods applicable on digital behavioral data 
for the social science use cases are available on 
the portal for reuse.
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Thanks for listening


