UNIVERSITY OF SURREY

Readability for author profiling?

Notebook for PAN at CLEF 2013

Lee Gillam, University of Surrey

Performances on the English portion of the test data

Submission	Accuracy									
	Total	Gender	Age	Gender	Age	Both	Gender	Age	Both	Predator
(incl. Spanish)										

Performances on the Spanish portion of the test data

| Submission | Accuracy
 Gender | | | Age |
| :--- | :---: | :---: | :---: | ---: | | Runtime |
| ---: |
| (incl. English) |

"Scientific" foundations?

- We know that text readability measures have been correlated with age (e.g.
http://www.cs.surrey.ac.uk/BIMA/People/L.Gillam/downloads/publications/2010.LN CS-readability.pdf)
- But what of gender?
- "Previous research has shown that women talk almost three times as much as men. In fact, an average woman notches up 20,000 words in a day, which is about 13,000 more than the average man."
- http://www.scienceworldreport.com/articles/5073/20130220/why-women-talk-more-men-language-protein.htm
- But: "Large studies have been conducted on sex differences in verbal abilities within the normal population, and a careful reading of the results suggests that differences in language proficiency do not exist". Wallentin, M. (2009) "Putative sex differences in verbal abilities and language cortex: A critical review". Brain and Language 108(3): 175183.

"Scientific" foundations?

- So for author profiling, can we

1. measure simple features of readability and see if age can be inferred?
2. see if there's a trace of increased word use merely in sentence lengths?

- And if the latter works, let others draw whatever conclusions they wish.

"Scientific" foundations?

- The best known readability measures already encode these for us, so lets break them out:

	Flesch	Kincaid	Fog Index	SMOG	ARI	Dale-Chall	Fry	
Sentence count Word count	\checkmark							
Characters count Syllables count Polysyllable words count (more than three syllables) List of easy words Scale	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		
0-100	\checkmark							

Approach

Word lengths

Sentence lengths

- Ignore if < 35 characters
- Fudged for speed by chars/6

Approach

- d50d5110d7db800410a47f004b6e92cc_en_20s_male.xml
- Length-ordered, word at 50% is of length 4.
- Length-ordered, sentence at 50% is of length 27.
- But these alone don't account for distributions, and in particular a tendency towards longer words and sentences
- Word at 90% length 7
- Sentence at 90% length 38
- So, two values per file (- does the 'readability’ tell us anything?):
- $7+4=11$ (average +n std devs did not appeal)
- $27+38=65$

Approach

- Too many datapoints to interpret manually - so throw at a decision tree and look for compactness (ability to generalise). Weka, J48.

J48 pruned tree

```
word <= 10: 20s (7673.0/3974.0)
word > 10
| sentence <= 108: 30s (19334.0/7365.0)
| sentence > 108
| | word <= 11: 20s (45.0/14.0)
| | word > 11: 30s (206.0/92.0)
Number of Leaves : 4
Size of the tree : 7
```

Gender: on samples

```
J48 pruned tree
```

```
wordlength <= 4
| wordlength <= 3
    | sentlength <= 10: male (166.0/60.0)
    | sentlength > 10: female (124.0/57.0)
    wordlength > 3: male (9605.0/4405.0)
wordlength > 4
sentlength <= 12
| sentlength <= 9: male (3832.0/1747.0)
    sentlength > 9
        wordlength <= 6
            | wordlength <= 5: male (3067.0/1500.0)
            | wordlength > 5: female (2149.0/1065.0)
            wordlength > 6
            | sentlength <= 10: female (245.0/111.0)
            sentlength > 10: male (692.0/296.0)
    sentlength > 12
    sentlength <= 35
        wordlength <= 7
            | sentlength <= 14
            | wordlength <= 6: female (5211.0/2526.0)
            wordlength > 6: male (755.0/357.0)
            sentlength > 14: female (39450.0/18560.0)
            wordlength > 7: male (1016.0/482.0)
            sentlength > 35: male (1814.0/842.0)
```

Number of Leaves 13
Size of the tree : 25

Age_gender?

UNIVERSITYOF

<= 10	$1\|\mid$ word >9															
\| sent <= 45	\|			sent < = 14												
\|	word <= 8	\|			sent <=11: 20s_male (22.0/13.0)											
\|		word <= 0: 30__male (14363.0/10626.0)	$1\|\|\|\mid$ sent > 11: 30 s_male (355.0/256.0)													
1 \|	word>0	\|		sent > 14												
1 \|		word <= 6	\|				sent <= 28									
\|				word <= 5: 20s_male (5.01.0)	\|				${ }_{\text {sent }<=18}$							
\|				word > 5	\|					sent <= 16: 30s_female (196.01/42.0)						
\|					sent <= 15	\|						sent > 16: 30s_male (256.0/182.0)				
\|					sent \ll 11: 20s_female (9.006.0)	\|					sent >18					
\|						sent > 11	1 \|				sent <= 20: 20s_male (309.0/226.0)					
\|						sent <= 13: 20 __male (22.0/13.0)	\|						sent > 20			
\|							sent > 13: 30s_male (26.0/18.0)	\|						sent $<=25$		
\|				sent > 15: 20__female (27.0/14.0)	\|								sent <= 21: 30s_female (44.0/32.0)			
1 । । \| word > 6	\|						sent > 21: 20s_male (537.0/387.0)									
\|				sent \ll 27	\|						sent > 25					
\|					sent < = 25	1 \|					sent <= 27: 30s_male (285.0/211.0)					
\|					word<<7	\|							sent > 27: 20s_male (200.0/140.0)			
\|						sent <= 14: 30s_male (273.0/182.0)	$111\|\mid$ sent > 28									
\|							sent > 14	1 \|		sent <= 29: 30s_male (58.0/38.0)						
\|								sent <= 17: 20s_male (122.0887.0)	$1\|\|\|\|\mid$ sent 29							
\|								sent >17	\|					sent < 31: 20s_male (160.0/14.0)		
\|									sent <= 19: 30s_female (79.0153.0)	$1\|\|\|\|\|\mid ~ s e n t>31$						
\|									sent > 19: 20s_male (96.0/66.0)	\|						sent <= 34: 30s_female (285.0/203.0)
\|						word >7	\|						sent > 34: 30s_male (708.01508.0)			
\|							sent <= 23	\| sent >45								
\|								sent <= 14: 20s_male (241.0/156.0)	\| \mid sent <= 187							
\|							sent > 14: 30s_male (601.0/422.0)	$1\|\mid$ word <= 7								
	$11 \mid$ word <= 6: 20 s_male (6.0/3.0)															
\|					sent > 25: 30 s_male (86.0/55.0)	$1\|\|\mid$ word >6										
1 \|		sent> 27	\|			sent <=128: 30s_male ($30.0 / 13.0$)										
\|					word <=7	\|			sent > 128: 10s_female (2.0/1.0)							
\|						sent <= 41	$1\|\mid$ word >7									
\|							sent < = 33	\|		sent <=75: 20s_male (974.0/653.0)						
\|								sent <= 29: 20s_female (17.011.0)	\|			sent > 75				
\|						sent > 29: 30s_male (39.0/18.0)	\|				word <=9					
\|							sent > 33: 20s_female (17.0/8.0)	\|				word <= 8: 20s_male (65.0/47.0)				
\|					sent > 41: 20s_male (8.014.0)	\|					word > 8					
\|					word > 7	\|					sent < 102					
\|						sent <= 42: 20s_temale (275.0/1995.0)	$1\left\|\left\|\left\|\left\|\left\|\mid ~ s e n t<=76: 20 s _\right.\right.\right.\right.\right.$male (6.03.0)									
\|						sent > 42: 20s_male (16.099.0)	\|						sent > 76			
1 \| word > 8	\|							sent <= 89								
1 \| ${ }^{\text {word < }=9}$																
\|			sent < = 30	\|								sent > 82: 30s_female (23.0/13.0)				
\|				sent <= 11: 20s_male (26.0/14.0)	\|							sent > 89: 20s_male (27.0/16.0)				
\|				sent > 11	\|					sent > 102						
\|				sent <= 14: 30s_female (384.0/284.0)	\|						sent < 110					
\|					sent> 14	\|						sent <= 103: 10 s _male (3.012 .0$)^{\text {a }}$				
\|						sent <= 19	\|							sent > 103: 30s_female (11.0/3.0)		
\|							sent <= 18	\|					sent > 110			
\|								sent < = 15: 20s_male (15.0/10.0)	\|						sent < = 160: 30s_male (43.0/32.0)	
\|								sent > 15: 30s_male (496.0365.0)	\|							sent > 160
\|							sent > 18: 20s_male (16.0/10.0)	\|								sent <= 175
\|						sent > 19	\|								sent < = 165: 30s_temale (2.0)	
\|							sent < 21:30__female (250.018182.0)	\|								sent > 165: 20s_female (4.01/.0)
\|							sent > 21: 20s_male (670.0/468.0)	\|							sent > 175: 30s_female (5.0/2.0)	
\|			sent > 30	$1\|\|\|\mid$ word >9												
\|				sent <= 43	$1\|\|\|\|\mid$ sent $<=112$											
\|					sent < = 39	$1\|\|\|\|\mid$ sent <= 93: 20 s_male (93.0/59.0)										
\|						sent <= 36	$1\|\|\|\|\mid ~ s e n t>93$									
\|							sent <=35: 20s_male (220.0/155.0)	\|						sent <= 94: 30s_female (2.0)		
\|							sent > 35: 30s_male (94.0667.0)	\|					sent > 94: 30s_male (53.0139 .0)			
\|						sent > 36: 20s_female (80.058.0)	\|				sent > 112					
\|					sent> 39	\|					sent <= 117: 20s__emale (6.013.0)					
\|					sent <= 42	\|						sent > 117: 20s_male (60.0/35.0)				
\|							sent < = 40: 20s_male (43.0/25.0)	$1 \mid$ sent > 187: 20s_male (143.0776.0)								
\|						sent > 40: 30s_male (38.0126.0)	word > 10									
\|						sent > 42: 20s_male (7.013.0)	\mid sent < = 28									

word $<=21$
sent $<=19$
sent $=14$
sent $<=14$ 20s_female (3.01. 0)
sent $>14: 30$ _ male (201.0)
sent > 19: 30s_male (67.0/1.0)
| sent $<=23$
serd <24
word <=22: 20s male (3.0/1.0)
word > 22: 22: 20s_male (4.01. (4.0).
word < <24 :30s female (3.01.0)
word $=24$ 20: 2 _female (3.0110) sent >23 20s_male (8.014.0)
sent >28
word $<=11$
sent $<=72$
sent $<=36$
| sent <= 33: 30s_male ($1053.0 / 736.0$
| sent >33 30_ 1 _female ($276.0 / 180.0$) sent \gg 34: 30s_male ($523.0 / 359.0$)
sent $<=$ 37: 30s_male (224.01154.0)
sent $>37: 30$ _female (519.01367 .0$)$
sent > 39: 30s_male (1350.01932 .0)
sent $<=52: 30 \mathrm{~s}$ female (1117.0752.0)
sent > 72
|sent <=74: 30s_male (40.0/26.0) sent >5
sent $<=106$
sent <= 98: 20s_male (27.0/13.0)
sent > 98: 10s_male (2.014.0)
sent > 99: 30 _female (18.010.0)
sent >106
sent <108
sent > 108: 20s_male (3.011.0)

word >11
\mid word $<=$

word <=12: 30s_female (4493.0/2964.0)
sent <=32

word > 13: 30s_male ($340.0 / 231.0$)
sent >32
sent <33
Word $<=13: 30$ s_temale (230.0/155.0
word $>13: 30$ _male (71.0.44.0)
word <= 13: 30s_male (1765.0/1184.C
sent >38
| sent $<=78$

$$
\left.\begin{array}{ll}
1 & \mid
\end{array} \right\rvert\, \text { word }<=12: \text { sos_ferale (86.0/51.0) }
$$

Number of Leaves : 220

Final rules

- AGE:
if(word <= 10): return "20s"
else: if(sentence <= 108): return "30s" else: if(word <= 11): return "20s"
else: return "30s"
- GENDER:
if(sentence <= 28):
if(word <= 18): return "male"
else:

$$
\begin{aligned}
& \text { if(sentence < 17): } \\
& \quad \text { if(word <= } 21 \text {): return "female" } \\
& \quad \text { else: return "male" } \\
& \text { else: } \\
& \quad \text { return "male" }
\end{aligned}
$$

else:

$$
\begin{aligned}
& \text { if(word <= 11): return "male" } \\
& \text { else: return "female" }
\end{aligned}
$$

Caveats

- Little effort put in to deriving results - hadn't noticed Spanish texts to start with - just wanted to see if this simple approach did anything.
- Approach works quite quickly (after all, it isn't doing much!)
- Should really do sentence lengths 'properly'.
- Many parameter values could be tested; different values to encompass distribution.
- And:

- No 10s!

J48 pruned tree
word $<=10: 20 s(7673.0 / 3974.0)$
word >10
| sentence <= 108: 30s (19334.0/7365.0)
sentence > 108
| | word <= 11: 20s (45.0/14.0)
| | word > 11: $30 s$ (206.0/92.0)

Number of Leaves : 4

Size of the tree : 7

Time taken to build model: 8.58 seconds

- Correctly Classified Instances 15802
- Incorrectly Classified Instances 11456
- Small proportion labelled 10s - so, 'guesses’ towards 20s/30s.

Test set proportions for 10s, 20s, 30s?

Performances on the English portion of the test data

Submission	Accuracy			Adult			Predator			Runtime(incl. Spanish)
	Total	Gender	Age	Gender	Age	Both	Gender	Age	Both	
meinal3	0.3894	0.5921	0.6491	6	8	6	72	41	41	383821541
pastor 13		0.5690	0.6572	1	8	0	72	32	32	2298561
mechtil3	0.3677	0.5816	0.5897	2	6	2	52	29	20	1018000000
santosh13	0.3508	0.5652	0.6408	9	9	9	69	32	29	17511633
yong13	0.3488	0.5671	0.6098	6	1	1	28	30	17	577144695
ladral3	0.3420	0.5608	0.6118	9	9	9	72	33	33	1729618
gillam13	0.3268	0.5410	0.6031	1	4	0	72	30	30	615347
Lown 19	0.2115	0.50067	0.5800	0	0	-	47	35	ว5	95ean
	0.3114	0.5456	0.5966	0	8	0	69	44	41	9559554
adityal3	0.2843	0.5000	0.6055	0	0	0	72	40	40	3734665
hidalgo13	0.2840	0.5000	0.5679	0	0	0	72	40	40	3241899
farias 13	0.2816	0.5671	0.5061	4	2	1	55	34	26	24558035
jankowskal3	0.2814	0.5381	0.4738	1	0	0	72	44	44	16761536
flekoval3	0.2785	0.5343	0.5287	4	4	4	61	39	34	18476373
weren 13	0.2564	0.5044	0.5099	1	0	0	71	40	39	11684955
ramirez13	0.2471	0.4781	0.5415	9	0	0	12	40	9	64350734
jimenez13	0.2450	0.4998	0.4885	6	2	1	27	31	14	3940310
morean 13	0.2395	0.4941	0.4824	4	4	2	33	39	19	448406705
baseline	0.1650	0.5000	0.3333	$\overline{5}$	$\overline{4}$	$\overline{7}$	$\bar{\square}$	17	12	29140
				5 4	$\frac{4}{7}$	1	55	17 9	12	22914419 855252000
cagninal3	0.0741	0.5040	0.1234	4	7	4	24	9	8	855252000

Performances on the Spanish portion of the test data

Submission	Total	Accuracy Gender	Age	Runtime (incl. English)
santosh13	0.4208	0.6473	0.6430	17511633
pastor13	0.4158	0.6299	0.6558	2298561
harol3	0.3897	0.6165	0.6219	9559554
flekoval3	0.3683	0.6103	0.5966	18476373
ladra13	0.3523	0.6138	0.5727	1729618
jimenez13	0.3145	0.5627	0.5429	3940310
kern13	0.3134	0.5706	0.5375	18285830
yong13	0.3120	0.5468	0.5705	577144695
ramirez 13	0.2934	0.5116	0.5651	64350734
adityal3	0.2824	0.5000	0.5643	3734665
jankowska 13	0.2592	0.5846	0.4276	16761536
gillam13	0.2543 0.250	0.4784	0.5377	615347
weren 13	0.2463	0.5362	0.4615	11684955
cagninal3	0.2339	0.5516	0.4148	855252000
hidalgol3	0.2000	0.5000	0.4000	3241899
farias13	0.1757	0.4982	0.3554	24558035
baseline	0.1650	0.5000	0.3333	$2361272{ }^{-}$
mechti13	0.0287	0.5455	0.0512	23612726 1018000000

What influence data bias?

Thank you

Questions?

L.Gillam@surrey.ac.uk

The work presented here has been supported in part by the TSB (IPCRESS) and in the recent past by EPSRC, JISC, TSB (KTP), amongst others.

