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MOTIVATION

 So, let’s start immediately…
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FEATURES

 Features are the core of any AV system!

 Usually classified into so-called linguistic layers (e.g. survey of Stamatatos)

 Instead of "layers" we prefer to use the term "Feature-Categories"…

Phoneme layer

Character layer

Lexical layer

Syntactic layer

Semantic layer There are even more, 

e.g. Layout layer
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FEATURE-CATEGORIES (PARAMETERS)

 Note: Majority of these Feature-Categories can be parameterized…

 Moreover: Frequencies of extracted features are also kept variable

(e.g. „use the 120 most frequent letter-bigrams“) 

 Consequence: Practically unlimited parameter space!

 (Unsatisfactory) solution: random examination…

• n-Gram sizes

• k-prefix / suffixes

• Amount of dictionary based features

• etc. 
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OUR APPROACH

 The procedure of our AV system can be divided into three steps:

Compute style deviation scores 

Determine verification decision

Preprocessing
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OUR APPROACH:

PREPROCESSING

 Applying preprocessing in terms of normalization and noise reduction

Essential to treat all documents uniquely!

 e.g. substituting diacritics, successive 

blanks, etc.

Important to increase quality of 

extracted features!

 e.g. removing citations, markup-

tags, formulas, non-words, etc.
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OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES 

 Our approach is based on a k-Nearest Neighbours (k-NN) classifier

 Hence, we need to construct feature-vectors from Y and X1, X2, …, Xm   

 for each chosen Feature-Category…

.

 Important: Majority-voting needs an uneven number of individual decisions 

 hence, number of Fi is always odd
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All documents from

the training set

F3

F2
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OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES 

 We calculate pairwise style deviation scores (SDS) between 

Y and X1, X2, …, Xm for each chosen Fi

 A SDS is a number between [0 - ), which is calculated through 

a distance function, e.g. Euclidean distance:

 The closer a SDS is to zero, the more similar Xi is to Y

 Once all SDS‘s are calculated we’ve got to store them…

∞ 



– 34 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES 

 Resulting SDS’s are stored together with the corresponding feature vectors 

into a sorted list (ascending order, according to the scores) 







– 35 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES 

 Resulting SDS’s are stored together with the corresponding feature vectors 

into a sorted list (ascending order, according to the scores) 





Outer_Distances = ( (SDS1, X1), (SDS2, X2), …, (SDSm, Xm) )



– 36 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES 

 Resulting SDS’s are stored together with the corresponding feature vectors 

into a sorted list (ascending order, according to the scores) 

 Next, we extract the first tuple and calculate again SDS’s 

but now between X1 and X2, X3, …, Xm 



Outer_Distances = ( (SDS1, X1), (SDS2, X2), …, (SDSm, Xm) )



– 37 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES 

 Resulting SDS’s are stored together with the corresponding feature vectors 

into a sorted list (ascending order, according to the scores) 

 Next, we extract the first tuple and calculate again SDS’s 

but now between X1 and X2, X3, …, Xm 

 Now we store only the SDS‘s into another ordered list:  

Outer_Distances = ( (SDS1, X1), (SDS2, X2), …, (SDSm, Xm) )



– 38 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES 

 Resulting SDS’s are stored together with the corresponding feature vectors 

into a sorted list (ascending order, according to the scores) 

 Next, we extract the first tuple and calculate again SDS’s 

but now between X1 and X2, X3, …, Xm 

 Now we store only the SDS‘s into another ordered list:  

Outer_Distances = ( (SDS1, X1), (SDS2, X2), …, (SDSm, Xm) )

Inner_Distances = ( SDS2, SDS3, …, SDSm )
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 To obtain a decision regarding a chosen feature category we first calculate 

the average of the k-SDS‘s within Inner_Distances:

.

 Now we can define an acceptance criterion
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OUR APPROACH:

DETERMINE VERIFICATION DECISION

 To obtain a decision regarding a chosen feature category we first calculate 

the average of the k-SDS‘s within Inner_Distances:

.

 Now we can define an acceptance criterion

 Accept the alleged authorship if… 

𝑎𝑣𝑔_𝑆𝐷𝑆 =
SDS2 + SDS3 + ⋯ + SDSk

k

k-NN of X1

SDS1

avg_SDS
≤ Threshold

In most of the cases: 1

performs very well…
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OUR APPROACH:

DETERMINE VERIFICATION DECISION

 Overall decision regarding all Feature-Categories would then be:

Determine verification decision

F3

F2

F1

F1 F2 F3

Apply majority vote… =
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EVALUATION:

USED MEASURES

Weighted accuracy:

Simple accuracy:
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EVALUATION: TRAIN SET

(PAN ONLY)

 Evaluation results according to "PAN13-AI-Training Corpus"

 Note: the first one is the best Fi - combination out of 212 = 4096
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EVALUATION: TEST SET

If runtime would

count too… 
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 Our approach has several benefits, as for instance:

 Language-independent, but not cross-lingual, e.g.: 

Y is written in another language than X1, X2, …, Xm

 Very fast, there's no need for time-consuming NLP-operations

 Scalable approach, almost anything can be replaced, expanded 

or combined…

Threshold, distance function(s), Feature-Categories (and their parameters),…
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CHALLENGES / FUTURE WORK

 Biggest challenge: 

Inscrutability of the methods parameter-space 

 Number of parameter-settings of the feature categories is near infinite
.. 

 Possible solution: 

Integrate evolutionary algorithms into the AV-system to find optimal  parameter 

settings  bad run-time performance

 Another challenge:

Does the topic of the test (or training documents) has a strong influence on 

the classification result?  Still an open question…

 Possible Solution:

One of our students is currently writing his thesis to answer this question




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Thank you very much for

your attention!
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USED PARAMETER-SETTINGS

 What kind of parameters were used for PAN and the german corpus…?


