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MOTIVA

PAN Workshop Program Online

« martin.potthast@gmail.com im auftrag von Martin Potthast [martin.potthast@uni-..

e ksh I ksh 1

+ Zur Nachverfolgung kennzeichnen. Beginnt am Dienstag, 27. August 2013. Fallig am Dienstag, 27. August 2013,

Dear everyone,

on our web pages you will now find the schedule of the PAN workshop:

uni-weimar.d I is/research, 3/pani

If you are attending the conference, please take a moment to find the
presentation slots that have been assigned to you. Please note that

some of you are invited to do both a poster and a talk.

Here are some instructions for preparing your presentation:

- Poster board size: 174 x 1.19

- Poster boosting: preceding the poster session, there will be a
poster boosting session. If you wish to take part in this, you'll have

to prepare at most 2 PowerPoint slides for a maximum (1) 1 minute
pitch talk and send them over to Pamela Forner (forner@fbk.eu). The
first slide should contain only the title, author names, affiliations

and lab / task names---it will serve as a "break’ between
presentations and to introduce the next speaker. Please do not include
animations. The deadline for submitting the poster booster slides is
Friday, September 6.

- Talks: we distinguish long talks and short talks: long talks are 25
minutes (plus 5 for questions), and short talks are 15 minutes (plus 5
for questions). Please make sure you do not exceed these time limits.
To avoid repetition, please da not make introductions or motivations
of the task. Rather, immediately start with your approach, and how it

differs from the state of the art (ie., your contributions).
If you have any questions, please don't hesitate to ask.
We're looking forward to meeting you next month!
Martin

Martin Potthast

Bauhaus-Universitat Weimar

www.webis.de --- www.netspeak.org

To avoid repetition, please do not make introductions or motivations

of the task. Rather, immediately start with your approach, and how it

differs from the state of the art (i.e., your contributions).

@ So, let’s start immediately...

é CASED

Z Fraunhofer
SIT
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VERIFICATION SCHEME
(OUR VERSION...)

Training Set

Alleged
document

for each: F,

Feature-Categories

A4 Vv

v

Verification
Model

apply Decision

mayority vote _

é CASED

\

~ Fraunhofer
SIT



FEATURES

B Features are the core of any AV system!
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FEATURES

B Features are the core of any AV system!

B Usually classified into so-called linguistic layers (e.g. survey of Stamatatos)
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FEATURES

B Features are the core of any AV system!

B Usually classified into so-called linguistic layers (e.g. survey of Stamatatos)

Semantic layer There are even more,

Syntactic layer e.g. Layout layer
Lexical layer

Character layer

Phoneme layer
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FEATURES

B Features are the core of any AV system!

B Usually classified into so-called linguistic layers (e.g. survey of Stamatatos)

Semantic layer There are even more,

Syntactic layer e.g. Layout layer
Lexical layer

Character layer

Phoneme layer

B Instead of "layers" we prefer to use the term "Feature-Categories"...
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FEATURE CATEGORIES

B We understand a "Feature-Category" as a concept of features,
belonging to (at least) one linguistic layer...
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FEATURE CATEGORIES

B We understand a "Feature-Category" as a concept of features,
belonging to (at least) one linguistic layer...

| F; |Feature category | Examples
F'y |Punctuation marks — s eatass O)LTT. 1
F5 |Letters a,b,c,.... X,v.z, A BC, ..., X, Y, 2
F's |Letter n-Grams en, er, th, ted, ough
Fy |Token k-prefixes [removed] ~+ [re], [confirmed] ~+ [con]
F5 |Token k-suffixes [extended] ~+ [ed]. [available] ~+ [able]
Fg |Function words and, or, the, on, in,while
F» |Function word n-Grams (which, is, or), (that, on, the, above)
Fg |Sentence k-beginning function words| (The ... ), (Since the...)
Fq |Token n-Grams (such that), (it could not)
F'10 |Token n-Gram lengths (ocf the) ~ (2, 3), (are known as) ~+ (3,5, 2)
F'11 |Token n-Gram k-prefixes (has been more) ~+ (ha, be, mo)
F'1o |Token n-Gram k-suffixes (has been more) ~+ (as, en, re)
|
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FEATURE-CATEGORIES (PARAMETERS)

B Note: Majority of these Feature-Categories can be parameterized...
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FEATURE-CATEGORIES (PARAMETERS)

B Note: Majority of these Feature-Categories can be parameterized...

n-Gram sizes

Kk-prefix / suffixes

Amount of dictionary based features
etc.

\

& CASED  Fraunhofer

— 1 [—
3 SIT



FEATURE-CATEGORIES (PARAMETERS)

B Note: Majority of these Feature-Categories can be parameterized...

n-Gram sizes

Kk-prefix / suffixes

Amount of dictionary based features
etc.

B Moreover: Frequencies of extracted features are also kept variable
(e.g. ,use the 120 most frequent letter-bigrams®)
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FEATURE-CATEGORIES (PARAMETERS)

B Note: Majority of these Feature-Categories can be parameterized...

* n-Gram sizes

» k-prefix / suffixes

« Amount of dictionary based features
« etc.

B Moreover: Frequencies of extracted features are also kept variable
(e.g. ,use the 120 most frequent letter-bigrams®)

B Consequence: Practically unlimited parameter space!
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FEATURE-CATEGORIES (PARAMETERS)

B Note: Majority of these Feature-Categories can be parameterized...
 n-Gram sizes
» k-prefix / suffixes

« Amount of dictionary based features
« etc.

B Moreover: Frequencies of extracted features are also kept variable
(e.g. ,use the 120 most frequent letter-bigrams®)

B Consequence: Practically unlimited parameter space!

B (Unsatisfactory) solution: random examination...
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OUR APPROACH

B The procedure of our AV system can be divided into three steps:
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OUR APPROACH

B The procedure of our AV system can be divided into three steps:

Preprocessing
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OUR APPROACH

B The procedure of our AV system can be divided into three steps:

Preprocessing

!

Compute style deviation scores
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OUR APPROACH

B The procedure of our AV system can be divided into three steps:

Preprocessing

!

Compute style deviation scores

!

Determine verification decision
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OUR APPROACH:
PREPROCESSING

B Applying preprocessing in terms of normalization and noise reduction
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OUR APPROACH:
PREPROCESSING

B Applying preprocessing in terms of normalization and noise reduction

Essential to treat all documents uniquely!

—> e.g. substituting diacritics, successive
blanks, etc.
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OUR APPROACH:
PREPROCESSING

B Applying preprocessing in terms of normalization and noise reduction

Essential to treat all documents uniquely!

—> e.g. substituting diacritics, successive
blanks, etc.

Important to increase quality of
extracted features!

—> e.g. removing citations, markup-
tags, formulas, non-words, etc.
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B Our approach is based on a k-Nearest Neighbours (k-NN) classifier
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B Our approach is based on a k-Nearest Neighbours (k-NN) classifier

B Hence, we need to construct feature-vectors from Y and X, X, ..., X,
—> for each chosen Feature-Category...
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B Our approach is based on a k-Nearest Neighbours (k-NN) classifier

B Hence, we need to construct feature-vectors from Y and X, X, ..., X,

- for each chosen Feature-Category... \/
Alleged All documents from
document the training set
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B Our approach is based on a k-Nearest Neighbours (k-NN) classifier

B Hence, we need to construct feature-vectors from Y and X, X, ..., X,
- for each chosen Feature-Category... \/

Alleged All documents from

” c document the training set
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B Our approach is based on a k-Nearest Neighbours (k-NN) classifier

B Hence, we need to construct feature-vectors from Y and X, X, ..., X,

- for each chosen Feature-Category... \/

Alleged All documents from

” c document the training set

B |Important: Majority-voting needs an uneven number of individual decisions
-> hence, number of F; is always odd
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B We calculate pairwise style deviation scores (SDS) between
Y and X, X,, ..., X, for each chosen F,
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B We calculate pairwise style deviation scores (SDS) between
Y and X, X,, ..., X, for each chosen F,

B A SDSis a number between [0 - o which is calculated through
a distance function, e.g. Euclidean distance:
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B We calculate pairwise style deviation scores (SDS) between
Y and X, X,, ..., X, for each chosen F,

B A SDSis a number between [0 - o which is calculated through
a distance function, e.g. Euclidean distance:

n 2
distpucid(X,Y) = _Zl (:r-f. — y@t)
=
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B We calculate pairwise style deviation scores (SDS) between
Y and X, X,, ..., X, for each chosen F,

B A SDSis a number between [0 - o which is calculated through
a distance function, e.g. Euclidean distance:

n 2
distpucid(X,Y) = _Zl (:r-f. — y@t)
=

B The closer a SDS is to zero, the more similar X, isto Y
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B We calculate pairwise style deviation scores (SDS) between
Y and X, X,, ..., X, for each chosen F,

B A SDSis a number between [0 - o which is calculated through
a distance function, e.g. Euclidean distance:

n 2
distpucid(X,Y) = Zl (:r--f. — y@t)
=

B The closer a SDS is to zero, the more similar X, isto Y

B Once all SDS's are calculated we’ve got to store them...
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B Resulting SDS’s are stored together with the corresponding feature vectors
into a sorted list (ascending order, according to the scores)
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B Resulting SDS’s are stored together with the corresponding feature vectors
into a sorted list (ascending order, according to the scores)

Outer: Distances = ( (SDS,, X,), (SDS,, X,), ..., (SDS_, X)) )
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B Resulting SDS’s are stored together with the corresponding feature vectors
into a sorted list (ascending order, according to the scores)

Outer: Distances = ( (SDS,, X,), (SDS,, X,), ..., (SDS_, X)) )

B Next, we extract the first tuple and calculate again SDS’s
but now between X, and X,, X, ..., X

m
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B Resulting SDS’s are stored together with the corresponding feature vectors
into a sorted list (ascending order, according to the scores)

Outer: Distances = ( (SDS,, X,), (SDS,, X,), ..., (SDS_, X)) )

B Next, we extract the first tuple and calculate again SDS’s
but now between X, and X,, X, ..., X

m

B Now we store only the SDS's into another ordered list:
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OUR APPROACH:
COMPUTE STYLE DEVIATION SCORES

B Resulting SDS’s are stored together with the corresponding feature vectors
into a sorted list (ascending order, according to the scores)

Outer: Distances = ( (SDS,, X,), (SDS,, X,), ..., (SDS_, X)) )

B Next, we extract the first tuple and calculate again SDS’s
but now between X, and X,, X, ..., X

m

B Now we store only the SDS's into another ordered list:
|

Inner. Distances = ( SDS,, SDS,, .., SDS__ )
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OUR APPROACH:
DETERMINE VERIFICATION DECISION

B To obtain a decision regarding a chosen feature category we first calculate
the average of the £-SDS's within /nner Distances.
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OUR APPROACH:
DETERMINE VERIFICATION DECISION

B To obtain a decision regarding a chosen feature category we first calculate
the average of the £-SDS's within /nner Distances.

k

avg_SDS =

\
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OUR APPROACH:
DETERMINE VERIFICATION DECISION

B To obtain a decision regarding a chosen feature category we first calculate
the average of the £-SDS's within /nner Distances.

k

avg_SDS =

k-NN of X,
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OUR APPROACH:
DETERMINE VERIFICATION DECISION

B To obtain a decision regarding a chosen feature category we first calculate
the average of the £-SDS's within /nner Distances.

k

avg_SDS =

k-NN of X,

B Now we can define an acceptance criterion
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OUR APPROACH:
DETERMINE VERIFICATION DECISION

B To obtain a decision regarding a chosen feature category we first calculate
the average of the £-SDS's within /nner Distances.

k

avg_SDS =

k-NN of X,

B Now we can define an acceptance criterion

B Accept the alleged authorship if...
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OUR APPROACH:
DETERMINE VERIFICATION DECISION

B To obtain a decision regarding a chosen feature category we first calculate
the average of the £-SDS's within /nner Distances.

k

avg_SDS =

k-NN of X,

B Now we can define an acceptance criterion

B Accept the alleged authorship if...

5D, < Threshold
avg SDS — o0

\
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OUR APPROACH:
DETERMINE VERIFICATION DECISION

B To obtain a decision regarding a chosen feature category we first calculate
the average of the £-SDS's within /nner Distances.

k

avg_SDS =

k-NN of X,

B Now we can define an acceptance criterion

B Accept the alleged authorship if...

In most of the cases: 1
SDS; performs very well...

avg SDS < Threshold

\
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OUR APPROACH:
DETERMINE VERIFICATION DECISION

B Overall decision regarding all Feature-Categories would then be:
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OUR APPROACH:
DETERMINE VERIFICATION DECISION

B Overall decision regarding all Feature-Categories would then be:

o

Determine verification decision
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OUR APPROACH:
DETERMINE VERIFICATION DECISION

B Overall decision regarding all Feature-Categories would then be:

o

Determine verification decision

/ /

4 ®®

& CASED 8- Z Fraunhofer

SIT




OUR APPROACH:
DETERMINE VERIFICATION DECISION

B Overall decision regarding all Feature-Categories would then be:

o

Determine verification decision

/ /
3® ®
~ )
~
Apply majority vote... — ®
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EVALUATION:
USED MEASURES

Simple accuracy:

Bear T+ Bcpy T - Number of correct answers per dataset C;

, with De, =

- |CarUCENU. .. | Total number of documents per dataset C;
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EVALUATION:
USED MEASURES

Simple accuracy:

Bear T+ Bcpy T - Number of correct answers per dataset C;

, with De, =

- |CarUCENU. .. | Total number of documents per dataset C;

Weighted accuracy:

_ ICar| - Degr + |ICEN| - Tepy + -
CarUCEN U .. .|

(weighted)@
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EVALUATION: TRAIN SE
(PAN ONLY)

B Evaluation results according to "PAN13-Al-Training Corpus"
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EVALUA
(PAN ON

|ON:

Y)

RAIN SE

B Evaluation results according to "PAN13-Al-Training Corpus"

F Begpl|Depn |Dear | (weighted) &
{ F1,F3,Fo} 80%| 90%| 70%|| 80% 77.14 %
{F1._F3.F7.F3,F12 } 80%| 80%| 65% 75 % 71.42%
{ Fi,F5, F3} 80%| 80Y%| 55%||71.67% 65.71 %
{ F1,Fa, Fo'} 809%| 80%| 60%]|73.33% 68.57 %
{F1._F3.FQ.F11,F12 80%| 80%| 55 %||71.67% 65.71%
{ Fr, Fo, F11} 60 %| 60%| 50%|/56.67 % 54.28 %
{ Fs. Fg, F». Fi1. Fio 60 %! 50%| 55% 55 % 54.28 %
{ Fo, F5, Fs } 809%| 40%| 40 %|(53.33% 45.71 %
{ F3, F7, Fo '} 20%| 70 %| 50 %||46.67 % 51.43%
{ Fy, Fg, F7 } 40%| 40%| 60 %||46.67 % 51.43%
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EVALUA
(PAN ON

|ON:

Y)

RAIN SE

B Evaluation results according to "PAN13-Al-Training Corpus"

F Begpl|Depn |Dear | (weighted) &
{ F1,F3,Fo} 80%| 90%| T0%| 80% 77.14%
{F1._F3.F7.F3,F12 } 80%| 80%| 65% 75 % 71.42%
{ F1, F>, F3} 80%| 80%| 55%||71.67% 65.71 %
{ Fy,Fy, Fo} 80%| 80%| 60%||73.33% 68.57 %
{F1._F3.FQ.F11,F12 80%| 80%| 55 %||71.67% 65.71%
{ Fr, Fo, F11} 60 %| 60%| 50%|/56.67 % 54.28 %
{ F3s. Fg., F5. Fi1, Fio 60 %! 50%| 55% 55 % 54.28 %
{ Fo, F5, Fg } 80%| 40%| 40 %||53.33% 45.71%
{ F3,F7. Fo } 20%| 70 %| 50%||46.67 % 51.43 %
{ Fy, Fs,F7} 40%| 40%| 60 %||46.67 % 51.43 %

B Note: the first one is the best F; - combination out of 2% = 4096
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EVALUATION: TRAIN SE
(PAN + GERMAN CORPUS)

B Evaluation results according to "PAN13-Al-Training Corpus"
in addition to a self-compiled german corpus (40 problem-cases)
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EVALUA

ION: TRAIN SE

(PAN + GERMAN CORPUS)

B Evaluation results according to "PAN13-Al-Training Corpus"
in addition to a self-compiled german corpus (40 problem-cases)

F Degp|Depn |Becr| Depe J|(weighted) &
{F1,F3. Fo} 80 %] 90%| 70%) 67.5%)]/76.86 % 72 %)
{ £, F3, F7, Fs. Fia } | 80%| 80%| 65%|77.5%| 75.63% 74.67 )
{ F1, Fy, F3} 80%| 80%| 55%| T5%| T2.5% 70.67%
{F1,F1, Fo } 80 %[ 80%| 60%]| 62.5%] 70.63% 65.33 %
{F1._F3._FQ.F11,F12 } 80%| 80%| 55%| 62.5%] 69.38% 64 %
{ Fr7, Fy, F11 } 60%| 60%| 50%| 60%|l 57.5% 57.33%
{ F5, Fs, Fr, F11, Fi2 }| 60%| 50%| 55%] 62.5%/ 56.88 % 58.67 %
{ F5, F5, Fs } 80%| 40%| 40%| 65%|| 56.26 % 56 %
{F3,F: Fy } 20%| 70 %| 50%| 67.5%]|| 51.86 % 60 %
{F1, Fe. Fr } 10%] 40%| 60%] 60% 50 % 55 %
& CASED - Z Fraunhofer
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EVALUATION: TRAIN SE
(PAN - INFLUENCE OF PARAMETERS)

B Evaluation results according to "PAN13-Al-Training Corpus"
with the best combination  { F}. F3, Fy }1d various parameter-settings
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EVALUA

ION: TRAIN SE

(PAN - INFLUENCE OF PARAMETERS)

B Evaluation results according to "PAN13-Al-Training Corpus"
{ F1, F5, Fy }ad various parameter-settings

with the best combination

F3.n-Gram|F3, Top-t| Fo, n-Gram|Fg, Top-1\@esp |Bepn| Dear & |(weighted) &
7 100 2 alll 80%| 90%| 70%| 80%  77.14%
6 100 2 all| 80 %100 %|65.50 %)|(82.67 % 77.14 %
7 100 2 all| 80%| 80%| 70%]||76.67 % 74.28 %
6 200 2 all| 80%(100%| 55 %)]|78.33 % 71.42%
7 100 2 160] 80%| 80%,| 60 %)]|73.33% 68.57 %
7 100 2 160| 80%| 80% 55 Y| 71.67% 65.71%
2 100 2 all] 80%(100%| 40 %||73.33% 62.86 %
3 all 2 all| 60%| 80% 55 % 65 % 62.86 %
2 all 2 alll 80%| 80%| 45%]||68.33 % 60 %
6 all 2 alll 40%| 80%| 50 %||56.67 % 57.14 %
& CASED g Z Fraunhofer
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EVALUA

ION: TES

SET

PAN 2013

Author Identification

June 12, 2013

Performances on all test data

Submission F; Precision Recall Runtime
seidmanl3 0.753 0.753 0.753 65476823
halvanil3 0.718 0.718 0.718 8362
layton13 0.671 0.671 0.671 9483
petmansonl3 0.671 0.671 0.671 36214445
jankowskal3 0.659 0.659 0.659 240335
ayalal3 0.659 0.659 0.659 5577420
bobicev13 0.655 0.663 0.647 1713966
fengl3 0.647 0.647 0.647 84413233
vladimirl3 0.612 0.612 0.612 32608
ghaeinil3 0.606 0.671 0.553 125655
vandam13 0.600 0.600 0.600 9461
moreaul3 0.600 0.600 0.600 7798010
jayapall3 0.576 0.576 0.576 7008
grozeal3 0.553 0.553 0.553 406755
gillam13 0.541 0.541 0.541 419495
kernl3 0.529 0.529 0.529 624366
baseline 0.500 0.500 0.500 -
petmansonl3 0.448 0.700 0.329 20671346
zhenshil3 0.417 0.800 0.282 962598
sorinl3 0.331 0.633 0.224 3643942
_—
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EVALUA

ION: TES

SET

PAN 2013

Author Identification

June 12, 2013

Performances on all test data

If runtime would
count too... ©

Submission F; Precision Recall Runtime
seidmanl3 0.753 0.753 0.753 65476823
halvanil3 0.718 0.718 0.718 8362
layton13 0.671 0.671 0.671 9483
petmansonl3 0.671 0.671 0.671 36214445
jankowskal3 0.659 0.659 0.659 240335
ayalal3 0.659 0.659 0.659 5577420
bobicev13 0.655 0.663 0.647 1713966
fengl3 0.647 0.647 0.647 84413233
vladimirl3 0.612 0.612 0.612 32608
ghaeinil3 0.606 0.671 0.553 125655
vandam13 0.600 0.600 0.600 9461
moreaul3 0.600 0.600 0.600 7798010
jayapall3 0.576 0.576 0.576 7008
grozeal3 0.553 0.553 0.553 406755
gillam13 0.541 0.541 0.541 419495
kernl3 0.529 0.529 0.529 624366
baseline 0.500 0.500 0.500 -
petmansonl3 0.448 0.700 0.329 20671346
zhenshil3 0.417 0.800 0.282 962598
sorinl3 0.331 0.633 0.224 3643942
_—
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BENEFITS

B Our approach has several benefits, as for instance:
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BENEFITS

B Our approach has several benefits, as for instance:

B Language-independent, but not cross-lingual, e.g.:
Y is written in another language than X, X, ..., X,
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BENEFITS

B Our approach has several benefits, as for instance:

B Language-independent, but not cross-lingual, e.g.:
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BENEFITS

B Our approach has several benefits, as for instance:

B Language-independent, but not cross-lingual, e.g.:
Y is written in another language than X, X, ..., X,

B Very fast, there's no need for time-consuming NLP-operations

B Scalable approach, almost anything can be replaced, expanded
or combined...

Threshold, distance function(s), Feature-Categories (and their parameters),...
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CHALLENGES / FU

URE WORK

B Biggest challenge:

Inscrutability of the methods parameter-space &
- Number of parameter-settings of the feature categories is near infinite
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Does the topic of the test (or training documents) has a strong influence on
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CHALLENGES / FUTURE WORK

Biggest challenge:
Inscrutability of the methods parameter-space &
- Number of parameter-settings of the feature categories is near infinite

Possible solution:
Integrate evolutionary algorithms into the AV-system to find optimal parameter
settings - bad run-time performance

Another challenge:
Does the topic of the test (or training documents) has a strong influence on
the classification result? - Still an open question...

Possible Solution:
One of our students is currently writing his thesis to answer this question
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Thank you very much for
your attention!
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USED PARAME

ER-SE

[INGS

B What kind of parameters were used for PAN and the german corpus...?

F;

n-Gram

k-prefix/suffix

Top-t (features)

Dictionary entries

Fy

all

18 per language

Fs

all

~ 50 per language

!

7

100

Fy

all

Fs

wol vo| |

all

Fe

all

~ 200 per language

Fr

all

Fy

all

Fy

all

Fio

160

Fi1

200

Fio

wol rolvol |

200
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