
© Fraunhofer

Authorship Verification

via k-Nearest Neighbor Estimation

Oren Halvani, Martin Steinebach, Ralf Zimmermann

Fraunhofer Institute for Secure Information Technology (SIT), Darmstadt, Germany

Department of Computer Science Technische Universität Darmstadt, Germany

– 2 –

OUTLINE

 Verification schemes

 Features & Feature-Categories

 Our approach

 Evaluation

 Benefits / challenges / future work

– 3 –

MOTIVATION

 So, let’s start immediately…

– 4 –

VERIFICATION SCHEME

(CLASSICAL VERSION…)

Verification

Model

Training Set

Alleged

document

Decision

Features

or

Threshold

f1 f2 f3

f4 f5

– 5 –

VERIFICATION SCHEME

(OUR VERSION…)

Verification

Model

Training Set

Alleged

document

Decision

Feature-Categories

or

Threshold

F1
F2 F3

F4
F5

…

for each: Fi

apply

mayority vote

– 6 –

FEATURES

 Features are the core of any AV system!





– 7 –

FEATURES

 Features are the core of any AV system!

 Usually classified into so-called linguistic layers (e.g. survey of Stamatatos)



– 8 –

FEATURES

 Features are the core of any AV system!

 Usually classified into so-called linguistic layers (e.g. survey of Stamatatos)



Phoneme layer

Character layer

Lexical layer

Syntactic layer

Semantic layer There are even more,

e.g. Layout layer

– 9 –

FEATURES

 Features are the core of any AV system!

 Usually classified into so-called linguistic layers (e.g. survey of Stamatatos)

 Instead of "layers" we prefer to use the term "Feature-Categories"…

Phoneme layer

Character layer

Lexical layer

Syntactic layer

Semantic layer There are even more,

e.g. Layout layer

– 10 –

FEATURE CATEGORIES

 We understand a "Feature-Category" as a concept of features,

belonging to (at least) one linguistic layer…

– 11 –

FEATURE CATEGORIES

 We understand a "Feature-Category" as a concept of features,

belonging to (at least) one linguistic layer…

– 12 –

FEATURE-CATEGORIES (PARAMETERS)

 Note: Majority of these Feature-Categories can be parameterized…







– 13 –

FEATURE-CATEGORIES (PARAMETERS)

 Note: Majority of these Feature-Categories can be parameterized…







• n-Gram sizes

• k-prefix / suffixes

• Amount of dictionary based features

• etc.

– 14 –

FEATURE-CATEGORIES (PARAMETERS)

 Note: Majority of these Feature-Categories can be parameterized…

 Moreover: Frequencies of extracted features are also kept variable

(e.g. „use the 120 most frequent letter-bigrams“)





• n-Gram sizes

• k-prefix / suffixes

• Amount of dictionary based features

• etc.

– 15 –

FEATURE-CATEGORIES (PARAMETERS)

 Note: Majority of these Feature-Categories can be parameterized…

 Moreover: Frequencies of extracted features are also kept variable

(e.g. „use the 120 most frequent letter-bigrams“)

 Consequence: Practically unlimited parameter space!



• n-Gram sizes

• k-prefix / suffixes

• Amount of dictionary based features

• etc.

– 16 –

FEATURE-CATEGORIES (PARAMETERS)

 Note: Majority of these Feature-Categories can be parameterized…

 Moreover: Frequencies of extracted features are also kept variable

(e.g. „use the 120 most frequent letter-bigrams“)

 Consequence: Practically unlimited parameter space!

 (Unsatisfactory) solution: random examination…

• n-Gram sizes

• k-prefix / suffixes

• Amount of dictionary based features

• etc.

– 17 –

OUR APPROACH

 The procedure of our AV system can be divided into three steps:

– 18 –

OUR APPROACH

 The procedure of our AV system can be divided into three steps:

Preprocessing

– 19 –

OUR APPROACH

 The procedure of our AV system can be divided into three steps:

Compute style deviation scores

Preprocessing

– 20 –

OUR APPROACH

 The procedure of our AV system can be divided into three steps:

Compute style deviation scores

Determine verification decision

Preprocessing

– 21 –

OUR APPROACH:

PREPROCESSING

 Applying preprocessing in terms of normalization and noise reduction

– 22 –

OUR APPROACH:

PREPROCESSING

 Applying preprocessing in terms of normalization and noise reduction

Essential to treat all documents uniquely!

 e.g. substituting diacritics, successive

blanks, etc.

– 23 –

OUR APPROACH:

PREPROCESSING

 Applying preprocessing in terms of normalization and noise reduction

Essential to treat all documents uniquely!

 e.g. substituting diacritics, successive

blanks, etc.

Important to increase quality of

extracted features!

 e.g. removing citations, markup-

tags, formulas, non-words, etc.

– 24 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 Our approach is based on a k-Nearest Neighbours (k-NN) classifier



.



– 25 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 Our approach is based on a k-Nearest Neighbours (k-NN) classifier

 Hence, we need to construct feature-vectors from Y and X1, X2, …, Xm

 for each chosen Feature-Category…

.



– 26 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 Our approach is based on a k-Nearest Neighbours (k-NN) classifier

 Hence, we need to construct feature-vectors from Y and X1, X2, …, Xm

 for each chosen Feature-Category…

.



Alleged

document

All documents from

the training set

– 27 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 Our approach is based on a k-Nearest Neighbours (k-NN) classifier

 Hence, we need to construct feature-vectors from Y and X1, X2, …, Xm

 for each chosen Feature-Category…

.



Alleged

document

All documents from

the training set

F3

F2

F1

– 28 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 Our approach is based on a k-Nearest Neighbours (k-NN) classifier

 Hence, we need to construct feature-vectors from Y and X1, X2, …, Xm

 for each chosen Feature-Category…

.

 Important: Majority-voting needs an uneven number of individual decisions

 hence, number of Fi is always odd

Alleged

document

All documents from

the training set

F3

F2

F1

– 29 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 We calculate pairwise style deviation scores (SDS) between

Y and X1, X2, …, Xm for each chosen Fi







– 30 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 We calculate pairwise style deviation scores (SDS) between

Y and X1, X2, …, Xm for each chosen Fi

 A SDS is a number between [0 -), which is calculated through

a distance function, e.g. Euclidean distance:





∞

– 31 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 We calculate pairwise style deviation scores (SDS) between

Y and X1, X2, …, Xm for each chosen Fi

 A SDS is a number between [0 -), which is calculated through

a distance function, e.g. Euclidean distance:





∞

– 32 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 We calculate pairwise style deviation scores (SDS) between

Y and X1, X2, …, Xm for each chosen Fi

 A SDS is a number between [0 -), which is calculated through

a distance function, e.g. Euclidean distance:

 The closer a SDS is to zero, the more similar Xi is to Y



∞

– 33 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 We calculate pairwise style deviation scores (SDS) between

Y and X1, X2, …, Xm for each chosen Fi

 A SDS is a number between [0 -), which is calculated through

a distance function, e.g. Euclidean distance:

 The closer a SDS is to zero, the more similar Xi is to Y

 Once all SDS‘s are calculated we’ve got to store them…

∞

– 34 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 Resulting SDS’s are stored together with the corresponding feature vectors

into a sorted list (ascending order, according to the scores)





– 35 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 Resulting SDS’s are stored together with the corresponding feature vectors

into a sorted list (ascending order, according to the scores)





Outer_Distances = ((SDS1, X1), (SDS2, X2), …, (SDSm, Xm))

– 36 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 Resulting SDS’s are stored together with the corresponding feature vectors

into a sorted list (ascending order, according to the scores)

 Next, we extract the first tuple and calculate again SDS’s

but now between X1 and X2, X3, …, Xm



Outer_Distances = ((SDS1, X1), (SDS2, X2), …, (SDSm, Xm))

– 37 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 Resulting SDS’s are stored together with the corresponding feature vectors

into a sorted list (ascending order, according to the scores)

 Next, we extract the first tuple and calculate again SDS’s

but now between X1 and X2, X3, …, Xm

 Now we store only the SDS‘s into another ordered list:

Outer_Distances = ((SDS1, X1), (SDS2, X2), …, (SDSm, Xm))

– 38 –

OUR APPROACH:

COMPUTE STYLE DEVIATION SCORES

 Resulting SDS’s are stored together with the corresponding feature vectors

into a sorted list (ascending order, according to the scores)

 Next, we extract the first tuple and calculate again SDS’s

but now between X1 and X2, X3, …, Xm

 Now we store only the SDS‘s into another ordered list:

Outer_Distances = ((SDS1, X1), (SDS2, X2), …, (SDSm, Xm))

Inner_Distances = (SDS2, SDS3, …, SDSm)

– 39 –

OUR APPROACH:

DETERMINE VERIFICATION DECISION

 To obtain a decision regarding a chosen feature category we first calculate

the average of the k-SDS‘s within Inner_Distances:

.





– 40 –

OUR APPROACH:

DETERMINE VERIFICATION DECISION

 To obtain a decision regarding a chosen feature category we first calculate

the average of the k-SDS‘s within Inner_Distances:

.





𝑎𝑣𝑔_𝑆𝐷𝑆 =
SDS2 + SDS3 + ⋯ + SDSk

k

– 41 –

OUR APPROACH:

DETERMINE VERIFICATION DECISION

 To obtain a decision regarding a chosen feature category we first calculate

the average of the k-SDS‘s within Inner_Distances:

.





𝑎𝑣𝑔_𝑆𝐷𝑆 =
SDS2 + SDS3 + ⋯ + SDSk

k

k-NN of X1

– 42 –

OUR APPROACH:

DETERMINE VERIFICATION DECISION

 To obtain a decision regarding a chosen feature category we first calculate

the average of the k-SDS‘s within Inner_Distances:

.

 Now we can define an acceptance criterion



𝑎𝑣𝑔_𝑆𝐷𝑆 =
SDS2 + SDS3 + ⋯ + SDSk

k

k-NN of X1

– 43 –

OUR APPROACH:

DETERMINE VERIFICATION DECISION

 To obtain a decision regarding a chosen feature category we first calculate

the average of the k-SDS‘s within Inner_Distances:

.

 Now we can define an acceptance criterion

 Accept the alleged authorship if…

𝑎𝑣𝑔_𝑆𝐷𝑆 =
SDS2 + SDS3 + ⋯ + SDSk

k

k-NN of X1

– 44 –

OUR APPROACH:

DETERMINE VERIFICATION DECISION

 To obtain a decision regarding a chosen feature category we first calculate

the average of the k-SDS‘s within Inner_Distances:

.

 Now we can define an acceptance criterion

 Accept the alleged authorship if…

𝑎𝑣𝑔_𝑆𝐷𝑆 =
SDS2 + SDS3 + ⋯ + SDSk

k

k-NN of X1

SDS1

avg_SDS
≤ Threshold

– 45 –

OUR APPROACH:

DETERMINE VERIFICATION DECISION

 To obtain a decision regarding a chosen feature category we first calculate

the average of the k-SDS‘s within Inner_Distances:

.

 Now we can define an acceptance criterion

 Accept the alleged authorship if…

𝑎𝑣𝑔_𝑆𝐷𝑆 =
SDS2 + SDS3 + ⋯ + SDSk

k

k-NN of X1

SDS1

avg_SDS
≤ Threshold

In most of the cases: 1

performs very well…

– 46 –

OUR APPROACH:

DETERMINE VERIFICATION DECISION

 Overall decision regarding all Feature-Categories would then be:

– 47 –

OUR APPROACH:

DETERMINE VERIFICATION DECISION

 Overall decision regarding all Feature-Categories would then be:

Determine verification decision

F3

F2

F1

– 48 –

OUR APPROACH:

DETERMINE VERIFICATION DECISION

 Overall decision regarding all Feature-Categories would then be:

Determine verification decision

F3

F2

F1

F1 F2 F3

– 49 –

OUR APPROACH:

DETERMINE VERIFICATION DECISION

 Overall decision regarding all Feature-Categories would then be:

Determine verification decision

F3

F2

F1

F1 F2 F3

Apply majority vote… =

– 50 –

EVALUATION:

USED MEASURES

Simple accuracy:

– 51 –

EVALUATION:

USED MEASURES

Weighted accuracy:

Simple accuracy:

– 52 –

EVALUATION: TRAIN SET

(PAN ONLY)

 Evaluation results according to "PAN13-AI-Training Corpus"

– 53 –

EVALUATION: TRAIN SET

(PAN ONLY)

 Evaluation results according to "PAN13-AI-Training Corpus"

– 54 –

EVALUATION: TRAIN SET

(PAN ONLY)

 Evaluation results according to "PAN13-AI-Training Corpus"

 Note: the first one is the best Fi - combination out of 212 = 4096

– 55 –

EVALUATION: TRAIN SET

(PAN + GERMAN CORPUS)

 Evaluation results according to "PAN13-AI-Training Corpus"

in addition to a self-compiled german corpus (40 problem-cases)

– 56 –

EVALUATION: TRAIN SET

(PAN + GERMAN CORPUS)

 Evaluation results according to "PAN13-AI-Training Corpus"

in addition to a self-compiled german corpus (40 problem-cases)

– 57 –

EVALUATION: TRAIN SET

(PAN  INFLUENCE OF PARAMETERS)

 Evaluation results according to "PAN13-AI-Training Corpus"

with the best combination and various parameter-settings

– 58 –

EVALUATION: TRAIN SET

(PAN  INFLUENCE OF PARAMETERS)

 Evaluation results according to "PAN13-AI-Training Corpus"

with the best combination and various parameter-settings

– 59 –

EVALUATION: TEST SET

– 60 –

EVALUATION: TEST SET

If runtime would

count too… 

– 61 –

BENEFITS

 Our approach has several benefits, as for instance:







– 62 –

BENEFITS

 Our approach has several benefits, as for instance:

 Language-independent, but not cross-lingual, e.g.:

Y is written in another language than X1, X2, …, Xm





– 63 –

BENEFITS

 Our approach has several benefits, as for instance:

 Language-independent, but not cross-lingual, e.g.:

Y is written in another language than X1, X2, …, Xm

 Very fast, there's no need for time-consuming NLP-operations



– 64 –

BENEFITS

 Our approach has several benefits, as for instance:

 Language-independent, but not cross-lingual, e.g.:

Y is written in another language than X1, X2, …, Xm

 Very fast, there's no need for time-consuming NLP-operations

 Scalable approach, almost anything can be replaced, expanded

or combined…

– 65 –

BENEFITS

 Our approach has several benefits, as for instance:

 Language-independent, but not cross-lingual, e.g.:

Y is written in another language than X1, X2, …, Xm

 Very fast, there's no need for time-consuming NLP-operations

 Scalable approach, almost anything can be replaced, expanded

or combined…

Threshold, distance function(s), Feature-Categories (and their parameters),…

– 66 –

CHALLENGES / FUTURE WORK

 Biggest challenge:

Inscrutability of the methods parameter-space

 Number of parameter-settings of the feature categories is near infinite
..









– 67 –

CHALLENGES / FUTURE WORK

 Biggest challenge:

Inscrutability of the methods parameter-space

 Number of parameter-settings of the feature categories is near infinite
..

 Possible solution:

Integrate evolutionary algorithms into the AV-system to find optimal parameter

settings  bad run-time performance









– 68 –

CHALLENGES / FUTURE WORK

 Biggest challenge:

Inscrutability of the methods parameter-space

 Number of parameter-settings of the feature categories is near infinite
..

 Possible solution:

Integrate evolutionary algorithms into the AV-system to find optimal parameter

settings  bad run-time performance

 Another challenge:

Does the topic of the test (or training documents) has a strong influence on

the classification result?  Still an open question…







– 69 –

CHALLENGES / FUTURE WORK

 Biggest challenge:

Inscrutability of the methods parameter-space

 Number of parameter-settings of the feature categories is near infinite
..

 Possible solution:

Integrate evolutionary algorithms into the AV-system to find optimal parameter

settings  bad run-time performance

 Another challenge:

Does the topic of the test (or training documents) has a strong influence on

the classification result?  Still an open question…

 Possible Solution:

One of our students is currently writing his thesis to answer this question





– 70 –

Thank you very much for

your attention!

– 71 –

– 72 –

USED PARAMETER-SETTINGS

 What kind of parameters were used for PAN and the german corpus…?

