

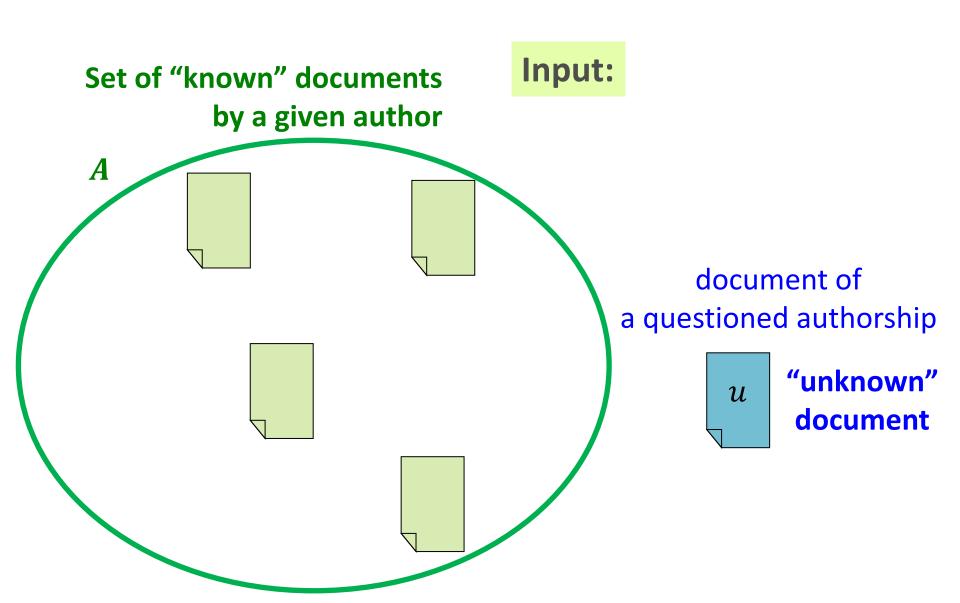
Proximity based one-class classification with Common N-Gram dissimilarity for authorship verification task

PAN 2013 Author Identification

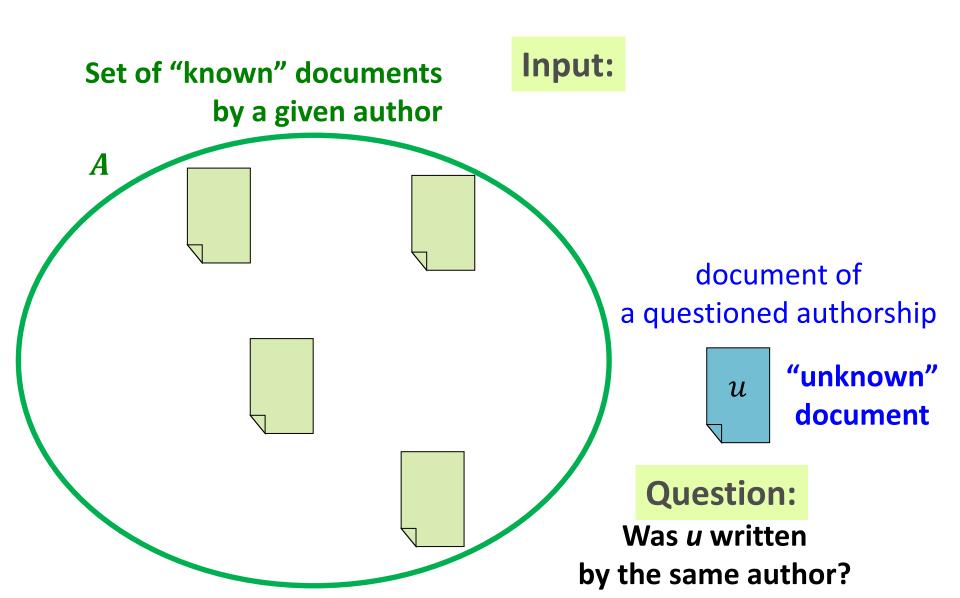
Magdalena Jankowska, Vlado Kešelj and Evangelos Milios

Faculty of Computer Science, Dalhousie University, Halifax, Canada

Authorship verification problem

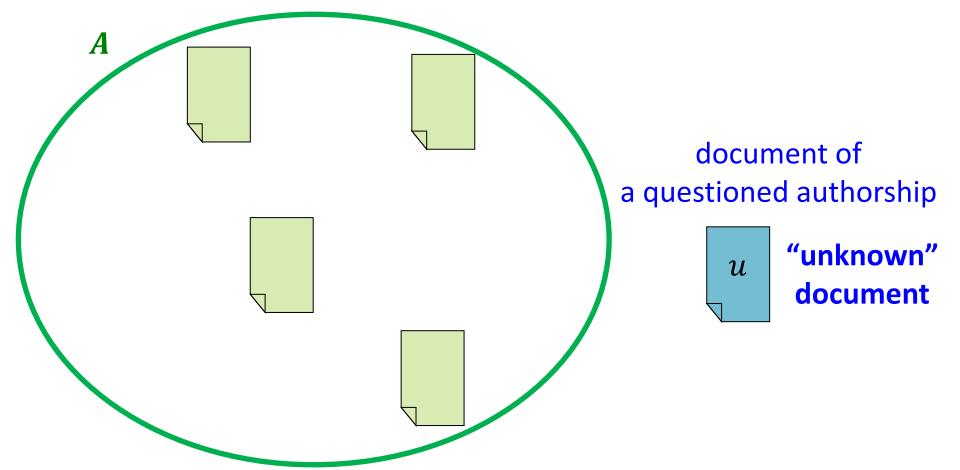


Authorship verification problem



Our approach to the authorship verification problem

- Proximity-based one-class classification. Is u "similar enough" to A?
- Idea similar to the k-centres method for one-class classification
- Applying CNG dissimilarity between documents



Common N-Gram (CNG) dissimilarity

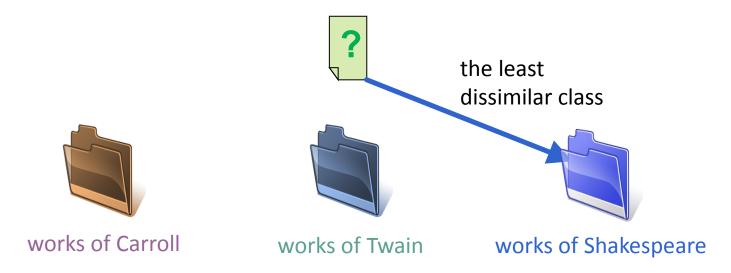
Proposed by

Vlado Kešelj, Fuchun Peng, Nick Cercone, and Calvin Thomas.

N-gram-based author profiles for authorship attribution.

In Proc. of the Conference Pacific Association for Computational Linguistics, 2003.

Proposed as a dissimilarity measure of the Common N-Gram (CNG) classifier for multi-class classification



Successfully applied to the authorship attribution problem

Profile

a sequence of L most common n-grams of a given length n

Profile

a sequence of L most common n-grams of a given length n

Example for n=4, L=6

document 1:

Alice's Adventures in the Wonderland by Lewis Carroll

profile P ₁		
n-gram	normalized frequency f_1	
_the	0.0127	
t h e _	0.0098	
a n d _	0.0052	
_ a n d	0.0049	
ing_	0.0047	
to	0.0044	

Profile

a sequence of L most common n-grams of a given length n

Example for n=4, L=6

document 1:

Alice's Adventures in the Wonderland by Lewis Carroll

document 2:	
Tarzan of the Apes	
by Edgar Rice Burroughs	5

profile P ₁		
n-gram	normalized frequency f_1	
_the	0.0127	
t h e _	0.0098	
a n d _	0.0052	
_ a n d	0.0049	
ing_	0.0047	
to	0.0044	

profile P ₂			
n-gram	normalized frequency f_2		
_the	0.0148		
t h e _	0.0115		
a n d _	0.0053		
of	0.0052		
_ a n d	0.0052		
ing_	0.0040		

Profile

a sequence of L most common n-grams of a given length n

Example for n=4, L=6

document 1:

Alice's Adventures in the Wonderland by Lewis Carroll

document 2: *Tarzan of the Apes*by Edgar Rice Burroughs

profile P 1		
n-gram	normalized frequency f_1	
_the	0.0127	
t h e _	0.0098	
a n d _	0.0052	
_ a n d	0.0049	
ing_	0.0047	
to	0.0044	

CNG dissimilarity between these documents

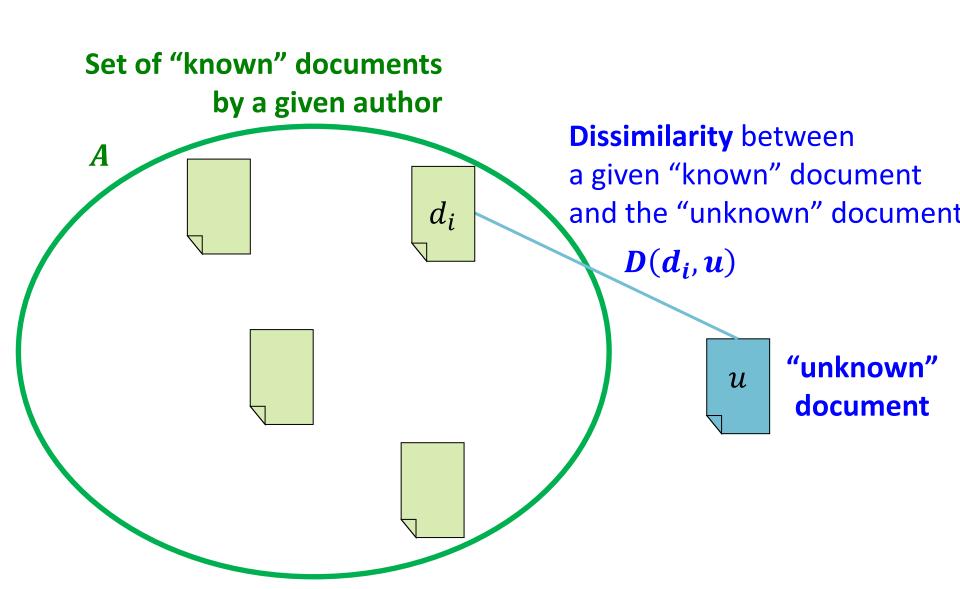
$$D = \sum_{x \in P_1 \cup P_2} \left(\frac{f_1(x) - f_2(x)}{\left(\frac{f_1(x) + f_2(x)}{2}\right)} \right)^2$$

 $f_i(x) = 0$ if x does not appear in P_i

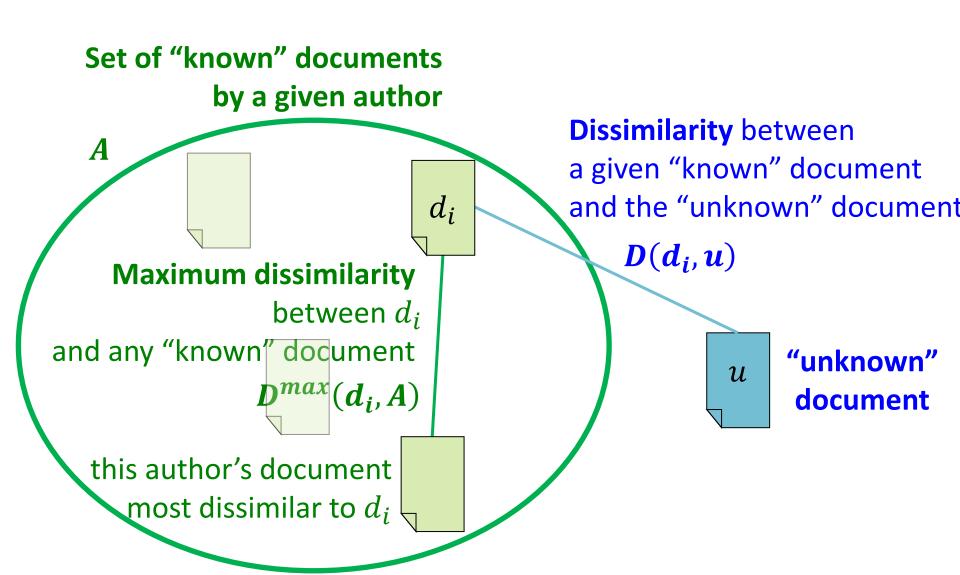
where

profile P ₂		
n-gram	normalized frequency f_2	
_the	0.0148	
t h e _	0.0115	
and_	0.0053	
_ o f _	0.0052	
_ a n d	0.0052	
ing_	0.0040	

Proximity-based one-class classification: dissimilarity between instances



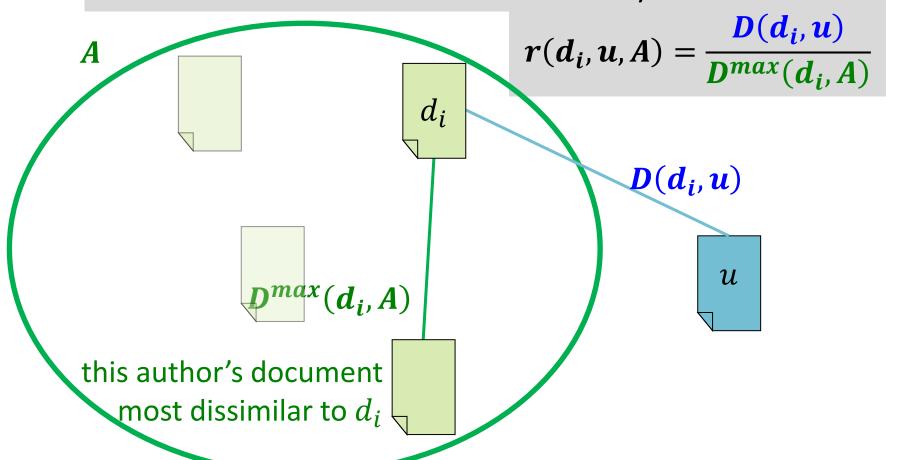
Proximity-based one-class classification: dissimilarity between instances



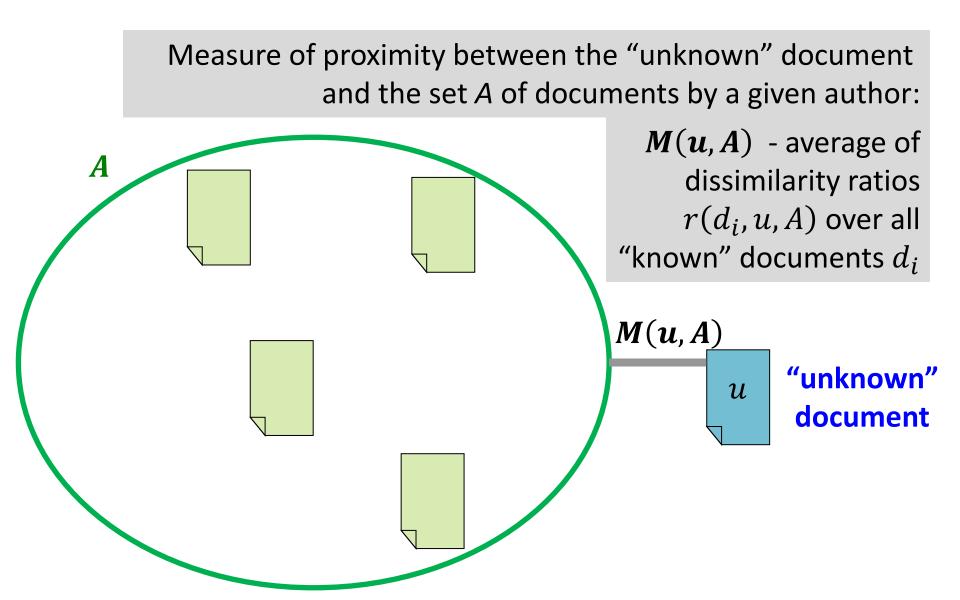
Proximity-based one-class classification: dissimilarity between instances

Dissimilarity ratio of d_i :

How much more/less dissimilar is the "unknown" document than the most dissimilar document by the same author.

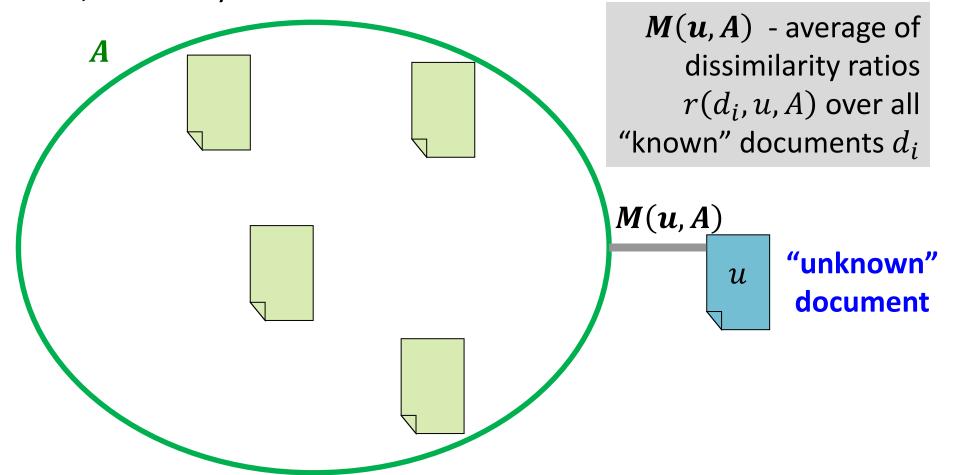


Proximity-based one-class classification: proximity between a sample and the positive class instances



Proximity-based one-class classification: thresholding on the proximity

Iff M(u, A) less than or equal to a threshold θ : classify u as belonging to A i.e., written by the same author



Real scores

Obtained by linear scaling the M(u,A) measure: the threshold $\theta \rightarrow 0.5$

> with **cut-off** at $\theta \pm 0.1$: $M(u, A) < \theta - 0.1 \rightarrow 1$ $M(u, A) > \theta + 0.1 \rightarrow 0$

Special conditions used

- Dealing with instances **when only 1 "known" document** by a given author is provided:
 - dividing the single "known" document into two halves and treating them as two "known" documents
- Dealing with instances when some documents do not have enough character n-grams to create a profile of a chosen length:
 - representing all documents in the instance by equal profiles of the maximum length for which it is possible
- Additional preprocessing (tends to increase accuracy on training data):
 - cutting all documents in a given instance to an equal length in words

Parameters

Parameters of our method:

Type of tokens: we used characters

n – n-gram length

L – profile length

θ – threshold for the proximity measure M for classification (biggest problem)

Parameter selection

Parameters for the final competition run selected using experiments on training data in Greek and English:

- provided by the competition organizers
- compiled by ourselves from existing datasets for other authorship attribution problems

For Spanish: the same parameters as for English

	English Spanish	Greek
n (length of character n-grams)	6	7
L (profile length)	2000	2000
θ (threshold) if at least two "known" documents given	1.02	1.008
θ (threshold) if only one "known" document given	1.06	1.04

Results on PAN 2013 competition test dataset

	Entire set	English subset	Greek subset	Spanish subset
F ₁ of our method	0.659	0.733	0.600	0.640
competition rank	5 th (shared) of 18	5 th (shared) of 18	7 th (shared) of 16	9th of 16
best F ₁ of other competitors	0.753	0.800	0.833	0.840
AOC	0.777	0.842	0.711	0.804

Conclusion

- Very encouraging results in terms of the power of our measure M for ordering the instances
- Difficult choice of the threshold, depending much on the corpus

Future work

- Further parameter analysis
- Exploration of involving a user interaction and insight through visualization
- Exploration of improvements of the method

Acknowledgement

• This research was funded by a contract from the Boeing Company, a Collaborative Research and Development grant from the Natural Sciences and Engineering Research Council of Canada, and Killam Predoctoral Scholarship.

Thank you!