

Overview of the Author Identification Task at PAN 2013

Patrick Juola & Efstathios StamatatosDuquesne UniversityUniversity of the Aegean

Outline

- Task definition
- Evaluation setup
- Evaluation corpus
- Performance measures
- Results
- Survey of approaches
- Conclusions

Author Identification Tasks

- <u>Closed-set</u>: there are several candidate authors, each represented by a set of training data, and one of these candidate authors is assumed to be the author of unknown document(s)
- <u>Open-set</u>: the set of potential authors is an open class, and "none of the above" is a potential answer
- <u>Authorship verification</u>: the set of candidate authors is a singleton and either he wrote the unknown document(s) or "someone else" did

Fundamental Problems

- Given two documents, are they by the same author? [Koppel et al., 2012]
- Given a set of documents (no more than 10, possibly only one) by the same author, is an additional (out-of-set) document also by that author?
- Every authorship attribution case can be broken down into a set of such problems

Evaluation Setup

- One problem comprises a set of documents of known authorship by the same author and exactly one document of questioned authorship
- All the documents within a problem are matched in language, genre, theme, and date of writing
- Participants were asked to produce a binary yes/no answer and, optionally, a confidence score:
 - a real number in the set [0,1] inclusive, where 1.0 corresponds to "yes" and 0.0 corresponds to "no"
- Any problem could be left unanswered
- Software submissions were required
- Early-bird evaluation was supported

Evaluation Corpus

- English, Greek, and Spanish are covered
- Language information is encoded in the problem labels
- The distribution of positive and negative problems (in every language-specific sub-corpus) was balanced
- Problems per corpus/language:

Corpus	English	Greek	Spanish
Training	10	20	5
(Early-bird evaluation)	(20)	(20)	(15)
Final evaluation	30	30	25
Total	40	50	30

English Part of the Corpus

- Collected by Patrick Brennan of *Juola & Associates*
- Consists of extracts from published textbooks on computer science and related disciplines, culled from an on-line repository
 - A relatively controlled universe of discourse
 - A relatively unstudied genre
- A pool of 16 authors was selected and their works were collected
- Each document was around 1,000 words each and collected by hand from the larger works
- Formulas and computer code was removed
- Some of the paired documents are members of a very narrow genre
 - e.g. textbooks regarding Java programming
- Others are more divergent
 - e.g. Cyber Crime vs. Digital Systems Design)

Greek Part of the Corpus

- Comprises newspaper articles published in the Greek weekly newspaper TO BHMA from 1996 to 2012
- A pool of more than 800 opinion articles by about 100 authors was downloaded
- The length of each article is at least 1,000 words
- All HTML tags, scripts, title/subtitles of the article and author names were removed semi-automatically
- In each verification problem, texts with strong thematic similarities indicated by the occurrence of certain keywords
- To make the task more challenging, a stylometric analysis [Stamatatos, 2007] was used to detect stylistically similar or dissimilar documents
 - In problems where the true answer is positive the unknown document was selected to have relatively low similarity from the other known documents
 - When the true answer is negative, the unknown document (by a certain author) was selected to have relatively low dissimilarity from the known documents (by another author)

Spanish Part of the Corpus

- Collected in part by Sheila Queralt of Universitat Pompeu Fabra and by Angela Melendez of Duquesne University
- Consisted of excerpts from newspaper editorials and short fiction

Training corpus

Distribution of known documents over the problems

Evaluation corpus

Performance Measures

- Overall results and results per language
- Binary yes/no answers:
 - Recall = #correct_answers / #problems
 - Precision = #correct_answers / #answers
 - $-F_1$ (used for final ranking)
- Real scores:
 - ROC-AUC
- Runtime

Submissions

• 18 software submissions

From Australia, Austria, Canada (2), Estonia,
Germany (2), India, Iran, Ireland, Israel, Mexico
(2), Moldova, Netherlands (2), Romania, UK

- 16 notebook submissions
- 8 teams used the early-bird evaluation phase
- 9 teams produced both binary answers and real scores

Overall Results

Rank	Submission	F ₁	Precision	Recall	Runtime
1	Seidman	0.753	0.753	0.753	65476823
2	Halvani et al.	0.718	0.718	0.718	8362
3	Layton et al.	0.671	0.671	0.671	9483
3	Petmanson	0.671	0.671	0.671	36214445
5	Jankowska et al.	0.659	0.659	0.659	240335
5	Vilariño et al.	0.659	0.659	0.659	5577420
7	Bobicev	0.655	0.663	0.647	1713966
8	Feng&Hirst	0.647	0.647	0.647	84413233
9	Ledesma et al.	0.612	0.612	0.612	32608
10	Ghaeini	0.606	0.671	0.553	125655
11	van Dam	0.600	0.600	0.600	9461
11	Moreau&Vogel	0.600	0.600	0.600	7798010
13	Jayapal&Goswami	0.576	0.576	0.576	7008
14	Grozea	0.553	0.553	0.553	406755
15	Vartapetiance&Gillam	0.541	0.541	0.541	419495
16	Kern	0.529	0.529	0.529	624366
	BASELINE	0.500	0.500	0.500	
17	Veenman&Li	0.417	0.800	0.282	962598
18	Sorin	0.331	0.633	0.224	3643942

Results for English

Submission	F ₁	Precision	Recall
Seidman	0.800	0.800	0.800
Veenman&Li	0.800	0.800	0.800
Layton et al.	0.767	0.767	0.767
Moreau&Vogel	0.767	0.767	0.767
Jankowska et al.	0.733	0.733	0.733
Vilariño et al.	0.733	0.733	0.733
Halvani et al.	0.700	0.700	0.700
Feng&Hirst	0.700	0.700	0.700
Ghaeini	0.691	0.760	0.633
Petmanson	0.667	0.667	0.667
Bobicev	0.644	0.655	0.633
Sorin	0.633	0.633	0.633
van Dam	0.600	0.600	0.600
Jayapal&Goswami	0.600	0.600	0.600
Kern	0.533	0.533	0.533
BASELINE	0.500	0.500	0.500
Vartapetiance&Gillam	0.500	0.500	0.500
Ledesma et al.	0.467	0.467	0.467
Grozea	0.400	0.400	0.400

Results for Greek

Submission	F ₁	Precision	Recall
Seidman	0.833	0.833	0.833
Bobicev	0.712	0.724	0.700
Vilariño et al.	0.667	0.667	0.667
Ledesma et al.	0.667	0.667	0.667
Halvani et al.	0.633	0.633	0.633
Jayapal&Goswami	0.633	0.633	0.633
Grozea	0.600	0.600	0.600
Jankowska et al.	0.600	0.600	0.600
Feng&Hirst	0.567	0.567	0.567
Petmanson	0.567	0.567	0.567
Vartapetiance&Gillam	0.533	0.533	0.533
BASELINE	0.500	0.500	0.500
Kern	0.500	0.500	0.500
Layton et al.	0.500	0.500	0.500
van Dam	0.467	0.467	0.467
Ghaeini	0.461	0.545	0.400
Moreau&Vogel	0.433	0.433	0.433
Sorin	-	-	-
Veenman&Li	-	-	-

Results for Spanish

Submission	F1	Precision	Recall
Halvani et al.	0.840	0.840	0.840
Petmanson	0.800	0.800	0.800
Layton et al.	0.760	0.760	0.760
van Dam	0.760	0.760	0.760
Ledesma et al.	0.720	0.720	0.720
Grozea	0.680	0.680	0.680
Feng&Hirst	0.680	0.680	0.680
Ghaeini	0.667	0.696	0.640
Jankowska et al.	0.640	0.640	0.640
Bobicev	0.600	0.600	0.600
Moreau&Vogel	0.600	0.600	0.600
Seidman	0.600	0.600	0.600
Vartapetiance&Gillam	0.600	0.600	0.600
Kern	0.560	0.560	0.560
Vilariño et al.	0.560	0.560	0.560
BASELINE	0.500	0.500	0.500
Jayapal&Goswami	0.480	0.480	0.480
Sorin	-	-	-
Veenman&Li	-	-	-

Overall Results (ROC-AUC)

Rank	Submission	Overall	English	Greek	Spanish
1	Jankowska, et al.	0.777	0.842	0.711	0.804
2	Seidman	0.735	0.792	0.824	0.583
3	Ghaeini	0.729	0.837	0.527	0.926
4	Feng&Hirst	0.697	0.750	0.580	0.772
5	Petmanson	0.651	0.672	0.513	0.788
6	Bobicev	0.642	0.585	0.667	0.654
7	Grozea	0.552	0.342	0.642	0.689
	BASELINE	0.500	0.500	0.500	0.500
8	Kern	0.426	0.384	0.502	0.372
9	Layton et al.	0.388	0.277	0.456	0.429

Overall Results (ROC)

Results for English (ROC)

Results for Greek (ROC)

Results for Spanish (ROC)

Early-bird Evaluation

- To help participants build their approaches in time
 - Early detection and fix of bugs
- To provide an idea of the effectiveness on a part of the evaluation corpus
- In total, 8 teams used this option

Early-bird vs. Final Evaluation

Submission	Early-bird	Final	Difference
Jankowska, et al.	0.720	0.659	-0.061
Layton, et al.	0.680	0.671	-0.009
Halvani, et al.	0.660	0.718	0.058
Ledesma, et al.	0.620	0.612	-0.008
Jayapal&Goswami	0.580	0.576	-0.004
Vartapetiance&Gillam	0.560	0.541	-0.019
Grozea	0.480	0.553	0.073
Petmanson	0.440	0.671	0.231

Combining the Submitted Approaches

- A meta-model can be built based on all the submitted systems
 - A similar idea applied to the PAN-2010 competition on Wikipedia vandalism detection [Potthast et al, 2010]
- A simple meta-classifier is based on the binary output of the 18 submitted models:
 - When the majority of the binary answers is Y/N then a positive/negative answer is produced
 - In ties, a "I don't know" answer is given
 - A real score is generated, that is the ratio of the number of positive answers to the number of all the answers

Results of the Meta-model

	F1	Precision	Recall	AUC
Overall	0.814	0.829	0.800	0.841
English	0.867	0.867	0.867	0.821
Greek	0.690	0.714	0.667	0.756
Spanish	0.898	0.917	0.880	0.926

		F1	Precision	Recall	AUC
	Overall	0.753	0.753	0.753	0.735
Seidman's Results:	English	0.800	0.800	0.800	0.792
	Greek	0.830	0.830	0.830	0.824
	Spanish	0.600	0.600	0.600	0.583

Results of the Meta-model (ROC)

Survey of the Submitted Approaches: Text Representation (1)

- Character features
 - letter frequencies, punctuation mark frequencies, character ngrams, common prefixes-suffices, compression-based models
- Lexical features
 - word frequencies, word n-grams, function words, function word n-grams, hapax legomena, morphological information (lemma, stem, case, mood, etc.), word/sentence/paragraph length, grammatical errors and slang words
- Syntactic and semantic features
 - POS n-grams, POS graphs, POS entropy, discourse-level information
 - Considerably increases the computational cost

Survey of the Submitted Approaches: Text Representation (2)

Combine different types of features in their models

- [Halvani, et al., Petmanson, et al.]

• Use a single type of features

- [Layton, et al., Van Dam]

- Select the most appropriate feature type per language
 - [Seidman]

Survey of the Submitted Approaches: Classification Models (1)

- *Intrinsic* vs. *extrinsic* verification models
- Intrinsic models use only the provided known and unknown documents per problem [Layton *et al.*, Halvani *et al.*, Jankowska *et al.*, Feng&Hirst]
- Extrinsic models use additional external resources (documents from other authors):
 - Taken from the training corpus [Vilariño et al.]
 - Downloaded from the Web [Seidman; Veenman&Li]
 - Attempt to transform the one-class classification problem to a binary or multi-class case

Survey of the Submitted Approaches: Classification Models (2)

- Popular classification methods:
 - Ensemble models (very effective in both intrinsic and extrinsic approaches) [Seidman; Halvani, et al.; Ghaeini]
 - Modifications of the CNG method [Jankowska, et al.; Layton et al.]
 - Variations of the unmasking method [Feng&Hirst; Moreau&Vogel]
 - Compression-based approaches [Bobicev; Veenman&Li]
- The vast majority follow the *instance-based* paradigm
 - Original text-length or equal-size fragments
- Only one approach follows the *profile-based* paradigm [van Dam]

Survey of the Submitted Approaches: Parameter Tuning

- How to optimize the parameter values required by every verification method?
- English/Greek/Spanish:
 - language-dependent parameter settings should be defined
- Some avoid this problem by using global parameter settings [Ghaeini; Halvani, et al.; Ledesma, et al.]
- The majority estimate the appropriate parameter values per language based on the training corpus
 - Sometimes enhanced by external documents [Jankowska, et al.; Petmanson; Seidman]
- Another approach builds an ensemble model using a base classifier for each parameter set configuration [Layton *et al.*]

Survey of the Submitted Approaches: Text Normalization

- The majority did not perform any kind of text preprocessing
 - Use of textual data as found in the given corpus
- Some performed simple transformations
 - Removal of diacritics [van Dam; Halvani, et al.]
 - Substitution of digits with a special symbol [van Dam]
 - Conversion of the text to lowercase [van Dam]
- Text-length normalization
 - First concatenate all known documents and then segment them into equal-size fragments [Halvani *et al.*; Bobicev]
 - Reduce all documents within a problem to the same size to produce equal-size representation profiles [Jankowska *et al.*]

Conclusions

- Novelties this year:
 - Focus on a fundamental problem
 - Requirement of software submissions
 - Evaluation corpus covers three languages
- Participation is satisfactory
 - 18 teams from 14 countries
 - Failed attempt to also attract researchers with mainly linguistic background
 - Semi-automated methods

Conclusions

- The most successful approaches follow the extrinsic verification paradigm
- Methods based on complicated NLP-based features do not seem to have any real advantage over simpler methods
 - They also require higher computational cost
- The meta-model combining the output of all the submissions proved to be very effective and in average better than any individual method
 - Heterogeneous models has not attracted much attention so far in authorship attribution research

Conclusions

- The vast majority of the participants answered all the problems
 - This makes Precision and Recall measures equal
 - Only two teams used the "I don't know" option
- Better evaluation criteria are needed focusing on the ability of the models to only provide quasicertain answers
 - E.g., c@1 used in the question answering community
 - Mandatory use of real scores indicating the confidence of the provided answers

Thank you for your participation!

Your suggestions for improving future PANs are particularly welcome!