Multilingual detection of Fake News Spreaders via Sparse Matrix Factorization

Boshko Koloski Senja Pollak Blaž Škrlj

Task

Given Twitter feed of an author determine if the user is:

- Fake-news spreader
- Non-spreader
- Languages: English & Spanish
- 30 tweets per author, 150 negative & 150 positive cases for both languages
- Evaluation on classification accuracy

Motivation

- Fake news make a significant impact on society
- Analysis of representations' expressiveness learned via multilingual LSA

Preprocessing

Feature generation

Example tweet:

- 1) Character n-grams (1,2):
- 1-gram: d, o, n; 2-gram: do, on, nt;
- 2) Word n-grams (2,3):
- 2-grams: dont know; 3-gram: dont know where;
- 3) TF-IDF on generated features

Don't know where it all started, Don't know where it began. The fighting intensifies: GOP Shyster Donors vs GOP Patriot Voters. #nhpolitics

3:18 PM · Nov 2, 2015 · Twitter Web Client

Latent Semantic Analysis

Visualization of training data

Models

- Stochastic Gradient Descent based:
 - linear-SVM
 - logistic regression
- Monolingual vs Multilingual model
- 10-fold GridSearchCV on 90% on the data; evaluate on 10%

Optimization

- Grid search on:
 - Number of generated features, n:[2500, 5000, 10000, 20000, 30000]
 - Number of dimensions in the SVD, d: [128, 256, 512, 640, 768, 1024]
- Model fine-tuning(regularization):
 - ElasticNet regularization
 - Lasso
 - Ridge

Learning pipeline

Learning

Alternative approaches

- Separate model for each language
- Doc2Vec & BERT representations
- Different Tokenizer: TweetTokinzer
- Tested AutoML methods, scored similarly to the proposed model

Results on DEV

name	type	#features	#dimensions	model	EN ACC	ES ACC
tfidf_large	multi	5000	768	LR	0.9633	0.9867
tfidf_tweet_tokenizer	multi	5000	768	LR	0.9633	0.9533
tfidf_small	mono	5000	512	SVM,SVM	0.9700	0.4900
tfidf_cv	mono	10000	768	SVM,SVM	0.9100	0.9367
tfidf_no_hash	multi	10000	768	LR	0.9300	0.9067
doc2vec_baseline	mono	100	#	RF,SVM	0.6428	0.6971
tfidf_tpot_baseline	mono	30000	#	LR,SVM	0.7500	0.7400
tfidf_baseline	mono	10000	#	LR,LR	0.5567	0.7033

Table 2. Final training data on TIRA.

Final evaluation results

name	type	#features	#dimensions	model	EN ACC	ES ACC
tfidf_large	multi	5000	768	LR	0.7150	0.7950
tfidf_cv	mono	10000	768	SVM,SVM	0.7000	0.7950

Table 3. Un-official evaluation on test data on TIRA

POS	ТЕАМ	EN	ES	AVG
1	bolonyai20	0.7500	0.8050	0.7775
1	pizarro20	0.7350	0.8200	0.7775
2	SYMANTO (LDSE) [1]	0.7450	0.7900	0.7675
3	koloski20	0.7150	0.7950	0.7550

Conclusion

- Space obtained by word and character n-grams is a good representation of the problem space.
- Semantic features don't introduce significant improvements.
- Multilingual space maintains space structure and word patterns.
- Multilingual approach tackles the problem better compared to the monolingual approach.

Further work

- Explore and exploit the multilingual approach on more languages.
- Try to enrich the space with a background knowledge about entities appearing in the text.