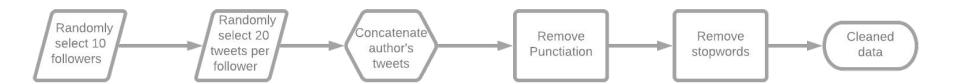
Know your neighbours: Efficient neighbor Profiling via Follower Tweets

Boshko Koloski Senja Pollak Blaž Škrlj


Task

- Given the tweets of the followers of a celebrity, determine celebrity's:
 - Occupation
 - Gender
 - Birth Year
- Data balanced towards gender and occupation.
- Evaluate harmonic mean of F1-scores.

Our approach

- For each task (gender, age, birth year), we use a separate model.
- Employs lightweight method.
- Altered the birth year task.

Data preparation

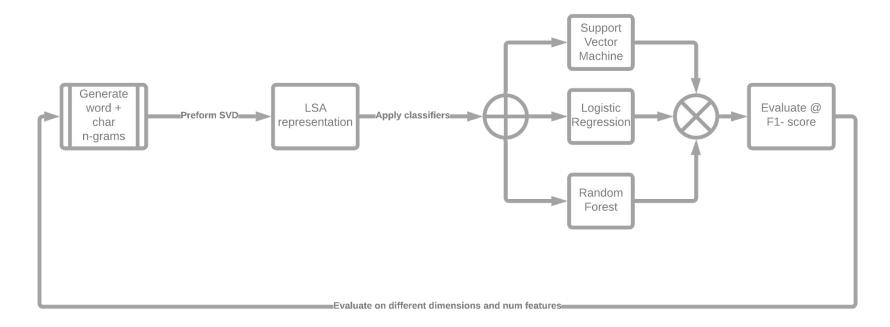
Feature generation

Example tweet:

- 1) Character n-grams (1,2):
- 1-gram: d, o, n; 2-gram: do, on, nt;
- 2) Word n-grams (2,3):
- 2-grams: dont know; 3-gram: dont know where;
- 3) TF-IDF on generated features

Don't know where it all started, Don't know where it began. The fighting intensifies: GOP Shyster Donors vs GOP Patriot Voters. #nhpolitics

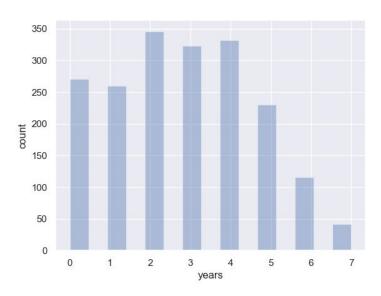
3:18 PM · Nov 2, 2015 · Twitter Web Client


Latent Semantic Analysis

Optimization

- Grid search on:
 - Number of generated features, n: [2500, 5000, 10000, 20000, 30000]
 - Number of dimensions in the SVD, d: [128, 256, 512, 640, 768, 1024]
- Model fine-tuning(regularization):
 - ElasticNet regularization
 - Lasso
 - Ridge

Learning pipeline


Birth year prediction

```
[R] Regression
birthyear = max(1949, min(predicted_year, 1999))
[FC] Full classification
one class per year = 60 classes
[AC] Altered Classification
custom intervals:
    [1949,1958]; [1959,1966]; [1967,1973];
```

[1992, 1995]; [1996, 1999];

[1974,1980]; [1981,1986]; [1987,1991];

Altered years

Results on training sets

Table 2: Final evaluation on training data on TIRA.

name	#features	#dimensions	f1 age	f1 gender	f1 occupation	crank
model-AC-2	20000	512	0.358		The same of the sa	0.516
model-AC-1	20000	512	0.346	0.663	0.669	0.509
model-FC-2	10000	512	0.313	0.639	0.632	0.473
model-FC-1	10000	512	0.291	0.605	0.648	0.452
model-R	10000	512	0.298	0.612	0.613	0.453
baseline-ngrams	#	#	0.362	0.584	0.521	0.469

Test set evaluation

TEAM	TEST-DATASET				
	CRANK	AGE	GENDER	OCCUPATION	
baseline-ngram-celebrity-tweets	0.631	0.500	0.753	0.700	
hodge20	0.577	0.432	0.681	0.707	
koloski20	0.521	0.407	0.616	0.597	
tuksa20	0.477	0.315	0.696	0.598	
baseline-ngram-follower-tweets	0.469	0.362	0.584	0.521	
random	0.333	0.333	0.500	0.250	

Conclusion

- Small sample based LSA gives competitive results for occupation and gender prediction
- Thresholding the years introduces significant improvement

Further work

- Development of improved strategies for thresholding
- Investigate performance in multilingual setting (see our paper on PAN Fake news detection Koloski et al. 2020)
- Adding background knowledge