HaMor at the Profiling Hate Speech Spreaders on Twitter

Notebook for PAN at CLEF 2021

Profiling Hate Speech Spreaders on Twitter

HATER

given a Twitter feed of 200 messages, determines whether its author spreads **hatred** content or **not**

NOT HATER

Spanish English

CB

Our Proposal

we proposed 4 types of features:

- 1. Hate Speech Detection (**HS**)
 - a. models-based
 - b. lexica-based
- 2. Moral Foundation Theory (MV)
- 3. Named Entity Recognition of Hate Speech target (NE)
- 4. Communicative Behavior (CB)

1. Hate Speech Detection: models-based

HatEval is a dataset for hate speech detection against **immigrants** and **women** in **Spanish** and **English** tweets (Task 5 of the SemEval-2019 workshop)

we trained 3 different models for counting

- for each user -

the number of hateful tweets predicted

[1] V. Basile, C. Bosco, E. Fersini, D. Nozza, V. Patti, F. M. Rangel Pardo, P. Rosso, M. Sanguinetti, **SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter**, in: Proceedings of the 13th International Workshop on SemanticEvaluation, Association for Computational Linguistics, 2019, pp. 54–63.

1. Hate Speech Detection: models-based

- SemEvalSVM (**SESVM**): a linear SVM trained using a text 1-3 grams bag-of-words
- Atalaya (ATA) [1]: linear-kernel SVM trained on a text representation composed of bag-of-words, bag-of-characters and tweet embeddings, computed from fastText wordvectors (Spanish)
- Fermi (**FER**) [2]: RBF kernel trained on tweet embeddings from Universal Sentence Encoder (**English**)
- [1] J. M. Pérez, F. M. Luque, **Atalaya at SemEval 2019 task 5: Robust embeddings for tweet classification**, in: Proceedings of the 13th International Workshop on Semantic Evaluation, Association for Computational Linguistics, 2019, pp. 64–69.
 [2] V. Indurthi, B. Syed, M. Shrivastava, N. Chakravartula, M. Gupta, V. Varma, **FERMI at SemEval-2019 task 5: Using sentence embeddings to identify hate speech against immigrants and women in Twitter**, in: Proceedings of the 13th International Workshop on Semantic Evaluation, Association for Computational Linguistics, 2019, pp. 70–74.

1. Hate Speech Detection: lexica-based

- HurtLex (**HL**): a lexicon of offensive, aggressive, and hateful words in over 50 languages (<u>including English and Spanish</u>). [1]
- NoSwearing [www.noswearing.com] (NoS): a list of English swear, bad, and curse words. Spanish translation by Pamungkas et. al [2]
- the Racial Slur Database [http://www.rsdb.org/full] (**RSdb**): a list of <u>English</u> words that could be used against someone: a specific race, sexuality, gender etc. <u>Spanish translation</u> by Babelnet's API

[1] E. Bassignana, V. Basile, V. Patti, **Hurtlex: A multilingual lexicon of words to hurt**, in: 5th Italian Conference on Computational Linguistics, CLiC-it 2018, volume 2253, CEUR-WS, 2018, pp. 1–6

[2] E. W. Pamungkas, A. T. Cignarella, V. Basile, V. Patti, et al., **14-exlab@ unito for ami atibereval2018: Exploiting lexical knowledge for detecting misogyny in english and spanish tweets**, in: 3rd Workshop on Evaluation of Human Language Technologies for IberianLanguages, IberEval 2018, volume 2150, CEUR-WS, 2018, pp. 234–241.

2. Moral Foundation Theory [1]

The main five foundations

care/harm

fairness/cheating

loyalty/betrayal

authority/subversion

purity/degradation

Could the foundations **loyalty/betrayal** and **authority/subversion** be related to **hatred** contents online?

[1] J. Haidt, C. Joseph, et al., The moral mind: How five sets of innate intuitions guide the development of many culture-specific virtues, and perhaps even modules, The innate mind 3 (2007) 367–391.

2. Moral Foundation Theory

extended Moral Foundations Dictionary (eMFD) [1]
 is a <u>dictionary</u> of English terms categorized by a specific <u>moral foundation</u>
 the mean, the standard deviation, and the total amount of terms occurring in author feed

four categories **loyalty/betrayal** and **authority/subversion**translated in Spanish by Babelnet's API

2. Moral Foundation Theory

- Moral Foundations Twitter Corpus (**MFTC**) [1]

is a collection of 35,000 English tweets annotated for their moral domains

transfer learning

convert the original multi-label annotation schema in a binary-label one

loyalty, betrayal, authority or subversion => HS (true)

while the other => HS (false)

[1] J. Hoover, G. Portillo-Wightman, L. Yeh, S. Havaldar, A. M. Davani, Y. Lin, B. Kennedy, M. Atari, Z. Kamel, M. Mendlen, et al., **Moral Foundations Twitter Corpus: A collection of 35k tweets annotated for moral sentiment**, Social Psychological and Personality Science 11(2020) 1057–1071

2. Moral Foundation Theory

- Moral Foundations Twitter Corpus (**MFTC**) [1]

- for each user -

we computed the number of potential hateful tweets

predicted by a linear SVM trained using a text 1-3 grams bag-of-words representation of the *Moral Foundations Twitter Corpus*

Available only for English language

3. Named Entity Recognition of Hate Speech target

the mention of a person belonging to a group vulnerable to discrimination

could be a **signal of hatred contents**

could help in discriminating between what is HS and what is not

3. Named Entity Recognition of Hate Speech target

- PERSON entities detected by the transition-based named entity recognition component of spaCy
- The retrieved entities have been searched on Wikipedia through the Opensearch API
- we recover the entries of the category box of each Wikipedia page
- 4. we manually selected the categories that could be **subject to discrimination**

RT #USER#: Day 39: Biden to Reopen A Detention Facility **Kamala Harris** Protested Against. #URL#

```
['Kamala', 'Kamala Harris', 'Kamal Haasan',
'Kamala (wrestler)', 'Kamala Khan', 'Kamala Surayya',
'Kamala Harris 2020 presidential campaign',
'Kamaladevi Chattopadhyay', 'Kamala Mills fire',
'Kamalani Dung']
```

Categories: Kamala Harris | 1964 births | 21st-century American memoirists | 21st-century American politicians | 21st-century American women politicians | 21st-century American women politicians | 21st-century American women writers | African-American candidates for President of the United States | African-American candidates for Vice President of the United States | African-American members of the Cabinet of the United States | African-American memoirists | African-American people in California politics | African-American United States senators | African-American women in politics | African-American women lawyers | American people of Indian Tamil descent | American politicians of Indian descent | American politicians of Jamaican descent | American prosecutors | American women lawyers | American women memoirists | Asian-American members of the Cabinet of the United States | Asian-American United States senators | Baptists from California | Women vice presidents | Writers from Oakland, California

3. Named Entity Recognition of Hate Speech target

we obtained two gazetteers of potential HS targets 75,890 entities for English, and 31,235 for Spanish

```
{Margaret Skirving Gibb : Scottish feminists,
Melih Abdulhayoğlu : Turkish emigrants to the USA,
James Adomian : LGBT people from Nebraska [...]}
```

the feature expresses:

- the total number of potential HS targets mentioned in author feed, the mean, the standard deviation
 - the ratio between the number of HS target
 - the total amount of HS targets mentioned by the author in her/his feed

4. Communicative Behaviour

the **structure** of the tweet and to the **user's style**

- Bag of Words (**BoW**): binary 1-3 grams of all author's feed.
- Bag of Emojis (BoE): binary 1-2 grams of all author's feed only including emojis

4. Communicative Behaviour

- Uppercase Words (**UpW**):
 the amount of words starting with a capital letter and the number of words containing at least two uppercase characters.
- Punctuation Marks (PM):
 the frequency of exclamation marks, question marks, periods, commas, semicolons, and finally the sum of all the punctuation marks mentioned before.
- Length (Len): 3 different features were considered to build a vector: number of words, number of characters, and the average of the length of the words in each tweet.

4. Communicative Behaviour

- Communicative Styles (**CoSty**):
 the fraction of retweets, of replies, and of original tweets over all user's
 feed.
- Emoji Profile (EPro):
 distinguish some user's traits from the emoji her/his used.

Genre: emoji ZWJ sequences (a) Person Swimming, Zero Width Joiner and (b) Female Sign)

Skin color: emoji ZWJ sequences

Religion: religious emojis 🌣 🕇 🕞

Nationality: national flag 💽 🎑 🧮 🌉 📜 🔀 🔰

Experimental setting

5-fold validation over the train set with the aim of **maximizing** the predictive **accuracy**.

linear Support Vector Machine

The code is available on GitHub:

https://github.com/mirkolai/PAN2021 HaMor

Experimental results

English		
FEATURES	ACCURACY	
RSdb, HatEval, FER eMFD, NER,	73.50%	
RSdb, HatEval, eMFD	71.17%	
HatEval, RSdb, <mark>NER</mark>	70.17%	
HatEval, FER	64.17%	
ALL	62.72%	
BoW	61.50%	

CB

Spanish		
FEATURES	ACCURACY	
HL, eMFD, BoW	82.83%	
HL, NoS, ATA, eMFD, NER, BoW, BoE	80.98%	
ATA, BoW	79.50%	
BoW	77.33%	
ALL	77.84%	
NoS, ATA, <mark>NER,</mark> BoE	68.33%	

CB

Experimental result

English		
FEATURES	ACCURACY	
RSdb, HatEval, FER eMFD, <mark>NER,</mark>	73.50%	

Spanish		
FEATURES	ACCURACY	
HL, NoS, ATA, eMFD, NER, BoW, BoE		

HS

Official results 73% (19th position - over 66 participating teams)

English			
FEATURES ACCURACY Rank			
RSdb, HatEval, FER eMFD, NER,	62% 棏	43th	

Spanish			
FEATURES ACCURACY Rank			
HL, NoS, ATA, eMFD, NER, BoW, BoE	84% 👚	2nd	

HS MV NE CB

Discussion

English			
FEATURES ACCURACY Rank			
RSdb, HatEval, FER eMFD, <mark>NER,</mark>	62%	43th	

Spanish			
FEATURES ACCURACY Rank			
HL, NoS, ATA, eMFD, NER, BoW, BoE	84%	2nd	

1. Hate Speech Detection

the use of models trained with **HatEval** seems to help in detection Hate Speech Spreaders on Twitter (**HatEval** and **Fermi** for English and **Atalaya** for Spanish)

The lexica of hateful words contribute to reach this level of accuracy (Racial Slur Database for English and Hurtlex and No Swearing for Spanish)

Discussion

English			
FEATURES ACCURACY Rank			
RSdb, HatEval, FER eMFD, NER,	62%	43th	

Spanish		
FEATURES	ACCURACY	Rank
HL, NoS, ATA, eMFD, NER, BoW, BoE	84%	2nd

- 2. Moral Values Detection
- 3. Named Entity Recognition of Hate Speech target

both models benefit of the **External Moral Values dictionary** and of the feature base on **Named Entity Recognition**

HS

Discussion

English			
FEATURES ACCURACY Rank			
RSdb, HatEval, FER eMFD, <mark>NER,</mark>	62%	43th	

Spanish			
FEATURES ACCURACY Rank			
HL, NoS, ATA, eMFD, NER, BoW, BoE	84%	2nd	

4. Communicative Behaviour

the model for English laks of features based on communicative behaviour

Bag of Word (**BoW**)

Bag of Emojy (**BoE**)

Open questions

Did **English** subtask get affected by the laking of features based on **Communicative Behaviour**?

Does the set of features used for the **Spanish** subtask be proficiently applied to the **English** dataset?

English	
FEATURES	ACCURACY
HL, NoS, ATA, eMFD, NER, BoW, BoE	?

we will verify that when the gold test will be available