

Profiling Fake News Spreaders on Twitter based on TFIDF Features and Morphological Process Notebook for PAN at CLEF 2020

M. Lichouri* M. Abbas* B. Benaziz*

CLEF 2020, 24-25 September 2020 - Thessaloniki, Greece. Contact: m.lichouri@crstdla.dz; m.abbas@crstdla.dz

*: Computational Linguistics Department, CRSTDLA, Algeria

Summary

1 Task information

Multilingual Fake News Detection

2 Characteristics, problems and solutions

- Characteristics
- Problems
- Solution

3 Experimental Setup and Evaluation

- Experimental Setup
- Evaluation

Conclusion

*: Computational Linguistics Department, CRSTDLA, Algeria

Task information

Experimental Setup and Evaluation $\underset{0000}{000}$

Conclusion

Multilingual Fake News Detection

Author Profiling for Fake News Detection

Is-it possible to detect Fake News Spreaders based on their profile?

*: Computational Linguistics Department, CRSTDLA, Algeria

Experimental Setup and Evaluation

Conclusion

Characteristics

Fake news is a threat to the

- Presidential Election like the US's 2016.
- Public health like in the time of Coronavirus.
- Security where it can lead to war.
- Commerce like in the Bourse Market.

*: Computational Linguistics Department, CRSTDLA, Algeria

How to and who decide which is real and which is fake?

*: Computational Linguistics Department, CRSTDLA, Algeria

	Characteristics, problems and solutions o • •	Experimental Setup and Evaluation 00000 000	Conclusion 00
Solution			

Naive assumption

We can detect and decide if a news is fake or not by either:

- 1 Checking facts.
- 2 Profiling the users who reported the news.

*: Computational Linguistics Department, CRSTDLA, Algeria

Experimental Setup

Corpus Statistics

	English	Spanish
# authors (XML files)	300	300
# sentences per author (XML file)	30,000	30,000
# words per author (XML file)	717,596	786,965
Max # word per author (XML file)	3,636	5,373
Min # word per author (XML file)	1,524	1,603
$Max \ \# \ char \ per \ author \ (XML \ file)$	12,962	23,588
Min $\#$ char per author (XML file)	5,238	5,799

Table: PAN Train set statistics for both English and Spanish

*: Computational Linguistics Department, CRSTDLA, Algeria

Experimental Setup

System Architecture

Figure: The architecture of the proposed system.

*: Computational Linguistics Department, CRSTDLA, Algeria

Experimental Setup

Surface Pre-processing

- Read XML files by the XML API.
- Remove Emojis using specified rules.
- Remove stop words (English/Spanish) using the NLTK stop words lists.
- Save the output as cleanText.

*: Computational Linguistics Department, CRSTDLA, Algeria

Experimental Setup and Evaluation 00000

Conclusion

Experimental Setup

Morphological Processing

*: Computational Linguistics Department, CRSTDLA, Algeria

Experimental Setup

Features Extraction using TF-IDF

- **1** Setup 1: TF-IDF with word 5-grams tokenizer.
- **2** Setup 2: TF-IDF with character 5-grams tokenizer.
- **3** Setup 3: TF-IDF with character with-boundary 5-grams tokenizer.
- 4 Setup 4: Union of the three above.

*: Computational Linguistics Department, CRSTDLA, Algeria

	Characteristics, problems and solutions o o o	Experimental Setup and Evaluation	Conclusion 00
Training P	hase		

Dataset	Model	F1-score (%)	
	LSVC	100	
English	RDG	99.58	
	SGD	100	
	LSVC	100	
Spanish	RDG	99.16	
	SGD	100	

Table: Results using the development set.

*: Computational Linguistics Department, CRSTDLA, Algeria

In the final submission, the model is trained on the whole training set.

Dataset	Model	F1-score (%)	
	LSVC	58.50	
English	RDG	61.50	
	SGD	52.00	
	LSVC	76.00	
Spanish	RDG	74.50	
	SGD	54.50	

Table: Results of the final submission using LSVC (ranked system), RDG and SGD (Test set).

*: Computational Linguistics Department, CRSTDLA, Algeria

	Characteristics, problems and solutions o o	Experimental Setup and Evaluation	
Discussion			

Dataset	Model	Dev	Test
	LSVC	100	58.50
English	RDG	99.58	61.50
	SGD	100	52.00
	LSVC	100	76.00
Spanish	RDG	99.16	74.50
	SGD	100	54.50

Table: Comparison of obtained results (Dev and Test) in term of F1-score(%).

*: Computational Linguistics Department, CRSTDLA, Algeria

- We proposed a simple, yet competitive system (ranked 45/66).
- Best features: a union of three TF-IDF features (word 5-grams, char 5-grams and char_wb 5-grams), in addition to three important morphological features: stemming, lemmatization and part of speech tagging.
- Best results: Our system achieved an F1-score of 76% for Spanish and 58.50% for English.

*: Computational Linguistics Department, CRSTDLA, Algeria

Experimental Setup and Evaluation

Conclusion

Danger: Believe Fake News

Ref:How our brains trick us into believing fake news. https: //www.yourlifechoices.com.au/the_meeting_place/post/ how-our-brains-trick-us-into-believing-fake-news

*: Computational Linguistics Department, CRSTDLA, Algeria