### INAOE's participation at PAN'13: Author Profiling task



A. Pastor López-Monroy, M.Sc. $^1$ 

M. Montes-y-Gómez, Ph.D.<sup>1</sup> H. J. Escalante, Ph.D.<sup>1</sup>

L. Villaseñor-Pineda, Ph.D.<sup>1</sup> E. Villatoro-Tello, Ph.D.<sup>2</sup>

September-2013

México

Computer Science Department, Instituto Nacional de Astrofísica, Óptica y Electrónica <sup>1</sup>

Information Technologies Department, Universidad Autónoma Metropolitana-Cuajimalpa<sup>2</sup>



- Introduction
- Document Profile Representation
- Evaluation
- Conclusions

.



(ロ) (四) (E) (E) (E)





## Introduction

- The Author Profiling (AP) task consists in knowing as much as possible about an unknown author, just by analyzing a given text [5].
- Initially some works in AP have started to explore the problem of detecting gender, age, native language, and personality in several domains [5, 9, 1].
- One of the domains of interest is the social media data (e.g., blogs, forums, reviews, tweets, chats, etc.).
- The PAN13 AP task consists in profiling **age** and **gender** in social media data.
- The AP task can be approached as a classification problem, where profiles represent the classes to discriminate.
   Author Profiling task at PAN'13

1.- Introduction



# The challenging raw social media data

There are some known issues that could pose a problem to the effectiveness of most common/standard techniques in text mining:

### • Sparsity:

- Short texts (e.g., comments, reviews): there are few terms in each of them to take that as a valuable evidence.
- Large sets of documents: where normally exist huge vocabularies (standard and non-standard).

### Noise in the data:

- The easiness to write and sent messages leads to make spelling/grammatical mistakes.
- Slang vocabulary.
- Noise in the labels of documents.



1.- Introduction

# Typical representation of documents

One of the most common approaches is the Bag of Terms (BOT)



Some shortcomings of BOT like representations are:

- They produce representations with high dimensionality and sparsity.
- They do not preserve any kind of relationship among terms.

イロト イポト イヨト イヨト



.

We propose the use of very simple but highly effective meta-attributes for:

- Having different textual features (e.g., content, style) in term vectors that represents relationships with each profile.
- Representing documents using the latter term vectors to highlight the relationships with each profile.
- Facing problems like: high dimensionality, sparsity of vectors and the noisy in text data.

These attributes are inspired in some ideas from CSA [7] to represent documents in text classification.

6 / 26



## **Document Profile Representation**

- DPR stores textual features of documents in a vector, where the problem of dimensionality is limited by the number of profiles to classify.
- DPR is built in two steps:

.

- Building term vectors in a space of profiles.
- Building document vectors in a space of profiles.
- Example of the final document-profile matrix:

|                       | <i>p</i> <sub>1</sub> |  |   | pi                  |
|-----------------------|-----------------------|--|---|---------------------|
| <i>d</i> <sub>1</sub> | $dp_{11}(p_1, d_1)$   |  | • | $dp_{i1}(p_i, d_1)$ |
|                       |                       |  |   |                     |
|                       |                       |  |   |                     |
|                       |                       |  | • |                     |
| dj                    | $dp_{1j}(p_1, d_j)$   |  |   | $dp_{ij}(p_i, d_j)$ |

→ < ☐ → < ≥ → < ≥ → ≥ Author Profiling task at PAN'13



## **Term representation**

2.- The method

For each term  $t_j$  in the vocabulary, we build a term vector  $\mathbf{t}_j = \langle tp_{1j}, \ldots, tp_{ij} \rangle$ , where  $tp_{ij}$  is a value representing the relationship of the term  $t_j$  with the profile  $p_i$ . For computing  $tp_{ij}$  first:

$$wtp_{ij} = \sum_{k:d_k \in P_i} \log_2 \left(1 + rac{tf_{kj}}{len(d_k)}
ight)$$

|          |   | $p_1$                |  | pi                   |
|----------|---|----------------------|--|----------------------|
| t        | 1 | $wtp_{11}(p_1, t_1)$ |  | $wtp_{i1}(p_i, t_1)$ |
|          |   |                      |  |                      |
| <b>·</b> |   |                      |  |                      |
| <b>·</b> |   |                      |  |                      |
| t        | j | $wtp_{1j}(p_1, t_j)$ |  | $wtp_{ij}(p_i, t_j)$ |

Author Profiling task at PAN'13

<ロ> (四) (四) (三) (三) (三) (三)



So we get  $\mathbf{t}_{j} = \langle wtp_{1j}, \dots, wtp_{ij} \rangle$ , and finally we normalize each  $wtp_{ij}$  as:

$$tp_{ij} = rac{wtp_{ij}}{\sum\limits_{j=1}^{TERMS} wtp_{ij}}$$

$$tp_{ij} = \frac{wtp_{ij}}{\frac{PROFILES}{\sum_{i=1}^{r}wtp_{ij}}}$$

In this way, for each term in the vocabulary, we get a term vector  $\mathbf{t}_{\mathbf{j}} = \langle tp_{1j}, \dots, tp_{ij} \rangle$ .

.

Author Profiling task at PAN'13

## **Documents representation**

Add term vectors of each document. Documents will be represented as  $\mathbf{d}_{\mathbf{k}} = \langle dp_{1k}, \ldots, dp_{nk} \rangle$ , where  $dp_{ik}$  represents the relationship of  $d_k$  with  $p_i$ .

$$ec{d}_k = \sum_{t_j \in D_k} rac{t f_{kj}}{len(d_k)} imes ec{t}_j$$

where  $D_k$  is the set of terms of document  $d_k$ .

|                       | <i>p</i> 1          | - | pi                  |
|-----------------------|---------------------|---|---------------------|
| <i>d</i> <sub>1</sub> | $dp_{11}(p_1, d_1)$ |   | $dp_{i1}(p_i, d_1)$ |
|                       |                     |   |                     |
|                       |                     |   |                     |
|                       |                     |   |                     |
| dj                    | $dp_{1j}(p_1, d_j)$ |   | $dp_{ij}(p_i, d_j)$ |

Author Profiling task at PAN'13
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



# Summary of Document Profile Representation

The representation is built in two steps:

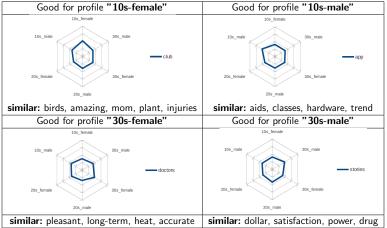
- Building term vectors that represents relationships among profiles.
- Building document vectors that represents relationships among profiles.

In the following slides we show some examples of how looks some high descriptive term vectors.

イロト 不得 トイヨト イヨト 二日



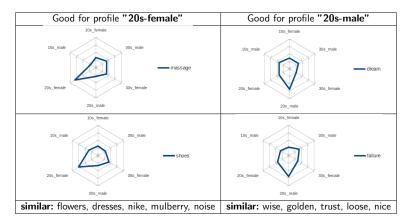
#### Examples of high descriptive term vectors.



3



Some term vectors have stronger peaks.



- 13 / 26



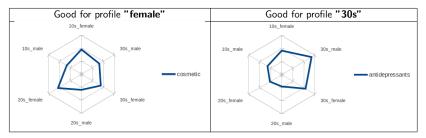
# Term vectors for multiple relationships observations

There are some term vectors that show a strong peak for two or three profiles. They are also highly descriptive term vectors for predicting for example:

- age
- gender
- specific age females
- specific age males



# Examples of term vectors for multiple relationships observations



There are other similar term vectors for specific profiles for example:

- ":)": for detecting young people (e.g. profiles 10s, and 20s).
- "game": for the prediction of males.





## Vectors for profile relationships

- Some of the latter terms had already been identified in the literature [5, 9, 1] for AP.
- Having such terms represented with high level attributes lets us know the meaningful relationships they keep with other profiles.
- A document vector is built through the summation of its term vectors.
- In the next slide we show the document centroids for each profile.

・ロン ・四 と ・ ヨ と ・ ヨ と



## **Document centroids for each profile**





- We approached the AP task as a six *age-gender* profiling classes: 10s-female, 10s-male, 20s-female, 20s-male, 30s-female, 30s-male.
- Although some other works have approached separately the Age and Gender detection, the relationships between age-gender profiles could be important [8].

Author Profiling task at PAN'13
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

18 / 26

• From the point of view of text classification, we have a set of training documents for each category (e.g., 10s-female and 10s-male. etc.).



Description of the corpus according to our used textual features (words, stopwords, punctuation marks and emoticons).

| Description for the English corpus |         |                        |         |         |        |         |         |  |  |
|------------------------------------|---------|------------------------|---------|---------|--------|---------|---------|--|--|
|                                    |         | Statistics by category |         |         |        |         |         |  |  |
| criteria                           | Total   | 10s-f                  | 10s-m   | 20s-f   | 20s-m  | 30s-f   | 30s-m   |  |  |
| authors                            | 236600  | 8600                   | 8600    | 42900   | 42900  | 66800   | 66800   |  |  |
| mean                               | 1058.11 | 1118.91                | 1169.02 | 1005.92 | 822.75 | 1172.32 | 1106.46 |  |  |
| std                                | 872.69  | 918.03                 | 717.56  | 786.67  | 918.92 | 696.84  | 1021.10 |  |  |
| min                                | 1       | 1                      | 1       | 1       | 1      | 1       | 1       |  |  |
| 25 %                               | 591     | 669                    | 692     | 367     | 75     | 701     | 637     |  |  |
| 50%                                | 898     | 987.5                  | 1176    | 845     | 685    | 1213    | 959     |  |  |
| 75%                                | 1541    | 1553                   | 1577.25 | 1535    | 1434   | 1567    | 1557    |  |  |
| max                                | 69374   | 33566                  | 12791   | 19308   | 51453  | 50077   | 69374   |  |  |

(ロ) (四) (E) (E) (E)



Description of the corpus according to our used textual features (words, stopwords, punctuation marks and emoticons).

|          | Description for the Spanish corpus |        |        |        |         |        |        |  |  |  |
|----------|------------------------------------|--------|--------|--------|---------|--------|--------|--|--|--|
|          | Statistics by category             |        |        |        |         |        |        |  |  |  |
| criteria | Total                              | 10s-f  | 10s-m  | 20s-f  | 20s-m   | 30s-f  | 30s-m  |  |  |  |
| authors  | 75900                              | 1250   | 1250   | 21300  | 21300   | 15400  | 15400  |  |  |  |
| mean     | 374.19                             | 234.60 | 255.36 | 369    | 349.044 | 376.71 | 434.58 |  |  |  |
| std      | 704.23                             | 586.42 | 664.79 | 586.82 | 719.41  | 630.95 | 884.97 |  |  |  |
| min      | 1                                  | 3      | 1      | 1      | 1       | 1      | 1      |  |  |  |
| 25 %     | 32                                 | 33     | 21     | 42     | 31      | 30     | 25     |  |  |  |
| 50 %     | 87                                 | 74     | 53     | 116    | 79      | 80     | 71     |  |  |  |
| 75 %     | 376                                | 212    | 174    | 410    | 323     | 403    | 447.25 |  |  |  |
| max      | 26163                              | 11629  | 12257  | 14507  | 26163   | 13869  | 16529  |  |  |  |

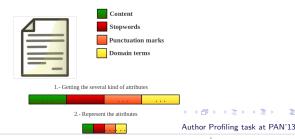
(ロ) (四) (E) (E) (E)





# **Evaluation**

- To build the representation, a vocabulary of the 50,000 most frequent terms were considered. The considered terms belongs to four different modalities: i) content features, ii) stopwords, iii) punctuation marks, and iv) domain specific vocabulary (e.g., emoticons and hastags).
- The LIBLINEAR library was used to perform the prediction [4]. During the development period, we performed a stratified 10 cross fold validation using the training PAN13 corpus.





• Experiments using the Second-Order-Attributes (SOA) and Bag-of-Terms (BOT) computed over the 50,000 most frequent terms on the datasets.

| Detailed classification accuracy |                         |      |       |       |        |       |       |                                       |               |                |
|----------------------------------|-------------------------|------|-------|-------|--------|-------|-------|---------------------------------------|---------------|----------------|
|                                  | Training data Test data |      |       |       |        |       |       | Averaged results for all participants |               |                |
|                                  |                         | SOA  |       | BOT   | SOA    |       | AVG   |                                       |               |                |
|                                  | Gender                  | Age  | Total | Total | Gender | Age   | Total | Gender (st.dv.)                       | Age (st.dv.)  | Total (st.dv.) |
| English                          | 61.3                    | 63.7 | 41.9  | 36.6  | 56.90  | 65.72 | 38.13 | 53.76 (3.33)                          | 53.51 (12.50) | 28.99 (7.42)   |
| Spanish                          | 70.5                    | 72.7 | 54.8  | 41.9  | 62.99  | 65.58 | 41.58 | 55.41 (4.99)                          | 49.04 (14.15) | 27.67 (9.35)   |

(ロ) (四) (E) (E) (E)

#### 3.- Evaluation



## Top 10 ranking in the PAN13

| Submission |        | Accuracy | /      | Runtime         |
|------------|--------|----------|--------|-----------------|
|            | Total  | Gender   | Age    | (incl. Spanish) |
| meina13    | 0.3894 | 0.5921   | 0.6491 | 383821541       |
| pastor13   | 0.3813 | 0.5690   | 0.6572 | 2298561         |
| mechti13   | 0.3677 | 0.5816   | 0.5897 | 1018000000      |
| santosh13  | 0.3508 | 0.5652   | 0.6408 | 17511633        |
| yong13     | 0.3488 | 0.5671   | 0.6098 | 577144695       |
| ladra13    | 0.3420 | 0.5608   | 0.6118 | 1729618         |
| ayala13    | 0.3292 | 0.5522   | 0.5923 | 23612726        |
| gillam13   | 0.3268 | 0.5410   | 0.6031 | 615347          |
| kern13     | 0.3115 | 0.5267   | 0.5690 | 18285830        |
| haro13     | 0.3114 | 0.5456   | 0.5966 | 9559554         |
| baseline   | 0.1650 | 0.5000   | 0.3333 | -               |

| Submission |        | Accuracy | 1      | Runtime         |
|------------|--------|----------|--------|-----------------|
|            | Total  | Gender   | Age    | (incl. English) |
| santosh13  | 0.4208 | 0.6473   | 0.6430 | 17511633        |
| pastor13   | 0.4158 | 0.6299   | 0.6558 | 2298561         |
| haro13     | 0.3897 | 0.6165   | 0.6219 | 9559554         |
| flekova13  | 0.3683 | 0.6103   | 0.5966 | 18476373        |
| ladra13    | 0.3523 | 0.6138   | 0.5727 | 1729618         |
| jimenez13  | 0.3145 | 0.5627   | 0.5429 | 3940310         |
| kern13     | 0.3134 | 0.5706   | 0.5375 | 18285830        |
| yong13     | 0.3120 | 0.5468   | 0.5705 | 577144695       |
| ramirez13  | 0.2934 | 0.5116   | 0.5651 | 64350734        |
| aditya13   | 0.2824 | 0.5000   | 0.5643 | 3734665         |
| baseline   | 0.1650 | 0.5000   | 0.3333 | -               |
|            |        |          |        | < □ >           |

Author Profiling task at PAN'13

문어 문

4.- Conclusions



## Conclusions

- The proposed approach is the best method at PAN'13 to predict age profiles in blogs (for both corpora).
- For the six-class AP task at PAN'13, our results overcomes the conventional BOT and holds the first position for both languages (overall accuracy), and second position for each one.
- For the english corpus, the proposed approach took only 0.22% (more than 454 times faster) of the time required by the method in one position below, and 0.59% (more than 166 times faster) of the time required by the method in first position.
- This is the first time that AP is addressed using attributes that represent relationships with profiles.
- Through very low computational cost our proposal can build discriminative low dimensional dense vectors for AP



# ... Questions?

Author Profiling task at PAN'13

References



## References



# Shlomo Argamon, Moshe Koppel, James W Pennebaker, and Jonathan Schler.

Automatically profiling the author of an anonymous text. *Communications of the ACM*, 52(2):119–123, 2009.



#### Federica Barbieri.

Patterns of age-based linguistic variation in american english1. *Journal of Sociolinguistics*, 12(1):58–88, 2008.



#### Penelope Eckert.

Age as a sociolinguistic variable. The handbook of sociolinguistics, 151:67, 1997.



# Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.

LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.



#### Moshe Koppel, Shlomo Argamon, and Anat Rachel Shimoni. Automatically categorizing written texts by author gender. *Literary and Linguistic Computing*, 17(4):401–412, 2002.



#### William Labov.

The intersection of sex and social class in the course of linguistic change. Language variation and change, 2(2):205–254, 1990.



#### Zhixing Li, Zhongyang Xiong, Yufang Zhang, Chunyongthing Kasan kin'ia

Fast text categorization using concise semantic analysis.