Author Verification: Exploring a Large Set of Parameters using a Genetic Algorithm

Erwan Moreau, Arun Jayapal and Carl Vogel

CNGL & Trinity College Dublin

moreaue@cs.tcd.ie, jayapala@cs.tcd.ie, vogel@cs.tcd.ie

This research is supported by Science Foundation Ireland (Grant 12/CE/I2267) as part of the Centre for Next Generation Localisation (www.cngl.ie) funding at Trinity College, University of Dublin.

PAN 2014

Approach

- Regression problem (at the dataset level)
 - one instance = one problem (known docs + unknown doc)
 - ▶ optimize AUC × c@1
- Robust strategy: simple, reliable but not optimized
- Fine-grained strategy: maximize performance
 - ▶ large set of parameters (10¹⁹ combinations)
 - risk of overfitting
 - Genetic learning
 - Reference corpus
 - ► all documents in the dataset
 - assumption: variability among authors

The robust strategy

Only four features

- A simple similarity measure
 - based on Jaccard similarity
 - characters 4-grams
- A simple consistency measure
 - Difference of the relative frequencies
 - Mean at document level

$$J_1 = \frac{(p+q)}{(p+q+r)}$$
 $J_2 = \frac{(p+r)}{(p+q+r)}$

with:

p = n-grams in both X and Y

q = n-grams in X but not in Y

r = n-grams in Y but not in X

The fine-grained strategy

- Algorithm = step-by-step process controlled by parameters
- Goal: find an optimal configuration
 - set of parameter/value pairs
 - defines the features, methods, thresholds, ML options...
- The configuration is generic:
 - represents how to capture an author's style
 - lacktriangle Example: using words bigrams? eq specific words bigrams
- Regression model

Observations types

- ▶ n-grams
 - words (3), characters (3), POS tags (4)
 - Combinations with skip-grams (8)
 - e.g. "<token> ___ <POS tag>"
- ightharpoonup stop-words n-grams (3)
 - ▶ n-grams, only most frequent words
 - ▶ e.g. "the ___ is ___"
- word length (1), Token-Type Ratio (1)
- ► Thresholds
 - min. frequency in a document
 - min. proportion of documents which contain the observation
 - known docs
 - reference corpus

Abstract indicators

Consistency

- how constant is the observation accross known documents?
- requires at least two known documents
- standard deviation, min-max range, ...

Divergence

- how specific is the observation to the author?
- against the reference corpus
- mean/median difference, Bhattacharrya, ...

Confidence

- is this observation a good indicator?
- uses consistency and divergence

Distance

- compare known vs. unknown doc
- Cosine, Jaccard, normal distribution-based measures

Scoring stage

- ► From abstract indicators to features
 - different methods
 - ightharpoonup observation level ightharpoonup document level
 - ▶ independent values, merge, ignore,...
- Regression model: SVM, decision trees (+ variants)
- Optional score confidence estimation
 - idea: assign 0.5 ("don't know") to ambiguous cases to optimize c@1

Meta-configuration file (excerpt)

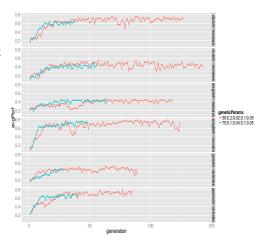
```
obsTypeActive.tokens=0 1
obsTypeActive.w2=0 1
obsTypeActive.w3=0 1
obsTypeActive.STOP3=0 1
obsTypeActive.STOP4=0 1
obsTypeActive.STOP5=0 1
minKnownDocsByObs=0.51 0.3
minRefDocsByObs=0.1 0.25 0.5
minFreqObsIndiv=2 3 5
consistencyValue=stdDev rangeQ1Q3 rangeMinMax stdDevRelMean ratioQ1Q3 [...]
consistencyUseRefIfOnlyOneKnownDoc=0 1
distinctivenessValue=areaCommonDistrib bhattaDiscCoeffDistrib [...]
confidenceMethod=onlyDistinct product mean geomMean constLogDistinct [...]
confidenceFromRanks=0 1
distMethod=euclid cosine jaccard area areaNorma CDF PDF PDFstd
distWithConfidence=no mult multLog multLogInv multSqrt
distMeanType=arithm geom harmo
featuresConfidenceFilterProp=0.05 0.1 0.2 0.5
featuresByObservMaxObserv=5 10 20
featuresIndicatorsMaxObserv=10 25 50 100
featuresIndicatorsMerge=global byObservType
learnMethod=M5P-M4 M5P-M8 SMO-C1-N0 SMO-C1-N1 SMO-C1-N0-RBF SMO-C1-N1-RBF
wekaFeatures=indicators distances all
```

Genetic learning: approach

- Basic algorithm:
 - population = configurations
- For each generation
 - measure performance by cross-validation on the training set
 - rank the configurations by their performance
 - top configs more likely to be selected as breeders
 - next generation generated by crossing over
- Mutations + variants
 - elitism: always keep the best configurations
 - random: generate new random configurations

Genetic learning: observations

- Fast convergence
- Small population sufficient
 - more stable if larger population
- ► 14,000 to 28,000 configurations evaluated (among 10¹⁹)
- main training: 3-fold CV
- ▶ final stage: 20-fold CV



Best configurations found

- ► Few observations types selected: **3 to 11** (among 24)
 - 1. Words *n*-grams, POS tags
 - 2. Word length, TTR, stop-words n-grams
 - 3. Unused: characters *n*-grams
- Methods
 - Consistency unused in most cases
 - Divergence: Bhattacharrya coefficient (more than 1 known doc)
 - ► Simple distance measures: mean difference, cosine, euclidean
 - frequency weighted with confidence score
- ► Learning stage
 - Decision trees selected most of the time
 - ► Confidence estimation model used only once

Final model selection (1)

- Both strategies evaluated on the "earlybird" corpus
 - thanks to the "Tira" system

Final model selection (2)

- Perf. loss lower for robust strategy
 - fine-grained strategy: overfitting probable
 - especially where most cases have only one known document
 - ightharpoonup correlation perf. drop / mean known docs = 0.77
- ► English Essays, Greek, Spanish
 - ▶ Median known docs / case ≥ 3
 - ⇒ fine-grained
- Dutch and English Novels
 - ▶ Median known docs / case = 1
 - ⇒ robust

Results

Dataset	Final test set			
	robust	fine-grained	final	rank
Dutch essays	0.755	0.563	0.777	4
Dutch reviews	0.375	0.350	0.375	3
English essays	0.325	0.372	0.372	3
English novels	0.313	0.352	0.313	8
Greek articles	0.436	0.565	0.565	3
Spanish articles	0.335	0.634	0.634	2
Macro-average	0.423	0.473	0.502	3
Micro-average			0.451	4

- Selecting strategy by dataset better than any of the two strategies alone
- Hypothesis correlation known docs/performance not confirmed

Results

Dataset	Final test set			
	robust	fine-grained	final	rank
Dutch essays	0.755	0.563	0.777	4
Dutch reviews	0.375	0.350	0.375	3
English essays	0.325	0.372	0.372	3
English novels	0.313	0.352	0.313	8
Greek articles	0.436	0.565	0.565	3
Spanish articles	0.335	0.634	0.634	2
Macro-average	0.423	0.473	0.502	3
Micro-average			0.451	4

- ► Selecting strategy by dataset better than any of the two strategies alone
- Hypothesis correlation known docs/performance not confirmed

Results

Dataset	Final test set			
	robust	fine-grained	final	rank
Dutch essays	0.755	0.563	0.777	4
Dutch reviews	0.375	0.350	0.375	3
English essays	0.325	0.372	0.372	3
English novels	0.313	0.352	0.313	8
Greek articles	0.436	0.565	0.565	3
Spanish articles	0.335	0.634	0.634	2
Macro-average	0.423	0.473	0.502	3
Micro-average			0.451	4

- Selecting strategy by dataset better than any of the two strategies alone
- Hypothesis correlation known docs/performance not confirmed

Conclusion and future work

- Good results with the genetic learning approach
 - meta-parameters optimized at a reasonable cost
- Benefits from combining the two strategies
 - multiple runs on the Earlybird corpus
 - chance or real specificity in the data?
- Investigate the performance loss with single known document
 - no appropriate method?
- Improve the approach
 - methods and features
 - genetic algorithm