Author Verification: Basic Stacked Generalization Applied To Predictions from a Set of Heterogeneous Learners

Erwan Moreau, Arun Jayapal, Gerard Lynch and Carl Vogel

CNGL & Trinity College Dublin

moreaue@cs.tcd.ie, jayapala@cs.tcd.ie, gerard.lynch@ucd.ie, vogel@cs.tcd.ie

This research is supported by Science Foundation Ireland (Grant 12/CE/I2267) as part of the Centre for Next Generation Localisation (www.cngl.ie) funding at Trinity College, University of Dublin.

#### PAN 2015

Combined Predictions from a Set of Heterogeneous Learners - CNGL & TCD

Approach

- Regression problem (at the dataset level)
  - one instance = one problem (known docs + unknown doc)
  - optimize AUC  $\times$  c@1
- Combining multiple learners
- Genetic algorithm used to:
  - train the individual learners,
  - train the meta-model

- Experience from PAN'2014:
  - Genetic algorithm: tends to overfit
  - Two approaches:
    - Fine-grained: many parameters to maximize performance
    - Robust: basic approach to avoid overfitting
  - $\rightarrow\,$  strategy chosen manually by dataset
- Results obtained by the organizers meta-model:



Fig. 1. ROC graphs of the best performing submissions and their convex hull, the baseline method, and the meta-classifier.

- 1. Fine-grained strategy: many parameters, maximize performance
- 2. Robust strategy: basic approach, safer
- 3. General Impostor
  - Idea: meta-comparison against third-party documents
  - Used by best system at PAN'14
- 4. Topic modelling
  - Modified for style distinctiveness
  - Goal = Complementarity
- 5. Universum Inference
  - Bootstrapping method
  - Homogenity of documents snippets mixed together

#### Configurations

- Representing distinct set of parameters in an homogeneous way
- ▶ Set of key-value pairs:  $C = \{p_1 \mapsto v_1, \dots, p_n \mapsto v_n\}$
- Describe the meta-parameters of a strategy
  - In training mode, a configuration C and a set of instances (problems) S define a model M in a unique way:

$$f_{train}(C,S) = M$$

In testing mode, a configuration C, a model M and an instance s define a unique prediction:

$$f_{test}(C, M, s) = p$$

- Specific set of parameters for each strategy
- Very large space of possible configs

### Common to all strategies

- Low-level features: various kinds of n-grams
  - words, letters, POS tags, skip-grams...
- Output of the strategy: a set of *indicators* (high-level features)
- Regression algorithm ightarrow score in [0,1]
  - SVM regression, Decision trees regression
- Optional: classification to try to detect ambiguous cases
  - Uses indicators + predicted score
  - Optimize C@5 score

#### Genetic Algorithm

A multi-configuration associates multiple values to one parameter:

$$MC = \left\{ p_1 \mapsto \{v_1^1, \dots, v_{m_1}^1\}, \dots, p_n \mapsto \{v_1^n, \dots, v_{m_n}^n\} \right\}$$

- 1 configuration = 1 "individual"
- Multi-configuration = space of all combinations = input
- Basic genetic process:
  - first generation initialized randomly
  - ► Then selection based on previous generation performance
  - Possibility of mutation.
- Selects a subset of optimal configurations for each strategy

## Architecture



# ML Setting

- *Risk* = overfitting
  - Genetic process: inner k-fold CV
    - New k-partitioning at every generation
  - Chained sequences with k increased
  - ► Final 10 × 2 CV
    - Control the influence of k-partitioning

#### Hybrid setup

- Training set split into:
  - Strategy training: 50% instances
  - Meta-stage training: 25%
  - Meta test set: 25%
- + Final eval with bagging
- + Overall 2-fold CV

| Introduction | Motivations | Individual Learners | Genetic algorithm | Implementation | Results |
|--------------|-------------|---------------------|-------------------|----------------|---------|
|              |             |                     |                   |                |         |
| Results      |             |                     |                   |                |         |

| Datacat | Meta test set | Full training set | Test set |      |
|---------|---------------|-------------------|----------|------|
| Dataset |               |                   | perf.    | rank |
| Dutch   | 0.710         | 0.722             | 0.635    | 1st  |
| English | 0.405         | 0.421             | 0.453    | 6th  |
| Greek   | 0.656         | 0.761             | 0.693    | 2nd  |
| Spanish | 0.950         | 0.952             | 0.661    | 4th  |
|         | *             | Macro-average     | 0.610    | 2nd  |

- Influence of the size of the sample
  - English: only one known doc by case
  - Spanish: four known docs by case
- Similar perf on training and test set
  - no overfitting (except with Spanish)

## Conclusion and future work

- Combining heterogeous learners works well
- Works better with more information
- Selecting learners based on diversity?
- In progress: making the code available