# External and Intrinsic Plagiarism Detection using a Cross-Lingual Retrieval and Segmentation System

Markus Muhr, Roman Kern, Mario Zechner, Michael Granitzer {mmuhr, rkern, mzechner, mgrani}@know-center.at

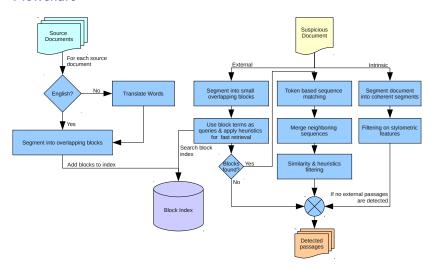
CLEF 2010 / PAN / 2010-09-22

#### Overview



## Hybrid System

- External
  - Based on information retrieval techniques
  - Post-processing based on sequence analysis
- Intrinsic
  - Detect style change
- Cross-lingual plagiarism detection
- No heuristics for high obfuscation
  - No word reordering
  - No synonym resolution


#### Focus

- Simulate a production system
- Scalable architecture

# System Overview



#### **Flowchart**



# External Plagiarism Detection



#### Overview

- Two step approach
  - Search for potentially matching suspicious document blocks
  - Apply heuristic post-processing on the potential matches

#### Work-Flow

- Build index out of source documents
  - ▶ Build overlapping blocks (40 terms)
- Split suspicious documents into blocks (16 terms)
  - Transform blocks into queries
  - Search source index for matching source blocks

# External Plagiarism Detection



## **Query Construction**

- For each block in the suspicious document build a query
- Sort query terms by document frequency
- Join the low frequent terms by AND
- Join the remaining terms by OR
- Additional heuristics to keep number of queries low

# External Plagiarism Detection



## Post-Processing

- Starting with query-block pairs
  - Expand the text around the query and the block
  - Build token by token matrix
  - Match for 3 consecutive tokens (and at least 10 characters) other thresholds for translated documents
- Process the sequences
  - Merged by a neighborhood criterion
  - Finally a similarity between merged sequences is calculated

# Cross-lingual Plagiarism Detection



#### Overview

- Approach: Normalize all documents to English
- Multiple alternative translations
  - Not the single-best translation, but multiple candidates
- Word translations
  - ▶ First step of a complete statistical machine translation system

# Cross-lingual Plagiarism Detection



#### Word translations

- Sentence aligned multi-lingual corpus
  - ► Europarl v5 Koehn [2005]
- Apply word alignment algorithm
  - ► BerkeleyAligner Liang et al. [2006]
- Number of translation candidates sorted by probability
- Replace each non-English word by up to 5 translation candidates

| task           | time    |
|----------------|---------|
| no translation | 7 ms    |
| translation    | 9.38 ms |

# Intrinsic Plagiarism Detection



#### Overview

- Style change detection
- Focus on features without semantics

#### Work-Flow

- Identify regions within a document
- Build feature centroid vector
- Compare regions with centroid

# Intrinsic Plagiarism Detection



## Region Detection

- ▶ First idea: Split document in blocks of equal size
- ► Approach: Linear text-segmentation algorithm
  - Build blocks of coherent topics
  - Stop-word filtered stems as features
- TextSegFault Kern and Granitzer [2009]
  - ► Efficient *O*(*n*)
  - Open-source

### Result



## Candidate Retrieval Step

- ► How many false positives are retrieved by the block candidate selection?
- Left: Based on 500 suspicious document in the development corpus
- Right: Based on the evaluation corpus

| task       | hit  | all  | ratio  |
|------------|------|------|--------|
| high       | 2543 | 3676 | 0.6918 |
| low        | 6614 | 6988 | 0.9465 |
| none       | 9381 | 9592 | 0.9780 |
| translated | 2349 | 2543 | 0.9237 |

| task       | hit   | all   | ratio  |
|------------|-------|-------|--------|
| high       | 13348 | 14756 | 0.9046 |
| low        | 14832 | 14883 | 0.9966 |
| none       | 16784 | 16784 | 1.0    |
| translated | 5462  | 6314  | 0.8651 |

## Result



## Overall System Performance

► Performance results of detected plagiarism separated by different sub-tasks for the hybrid evaluation corpus

| task                | Precision | Recall  | Granularity | Score  |
|---------------------|-----------|---------|-------------|--------|
| non-translated all  | 0.9299    | 0.8967  | 1.0553      | 0.8785 |
| non-translated none | -         | 0.9497  | 1.0025      | -      |
| non-translated low  | -         | 0.9207  | 1.0968      | -      |
| non-translated high | -         | 0.8122  | 1.0771      | -      |
| translated          | 0.8036    | 0.61616 | 2.1655      | 0.4195 |
| external            | 0.9053    | 0.8631  | 1.1611      | 0.7949 |
| intrinsic           | 0.212     | 0.1566  | 1.0         | 0.1802 |
| Overall             | 0.8417    | 0.7057  | 1.1508      | 0.6948 |
|                     |           |         |             |        |

## Conclusions



- Hybrid system
  - External plagiarism detection
  - Support for cross-lingual plagiarism detection
  - Intrinsic (style-based) plagiarism detection
- Issues
  - Scalable (but slow implementation)
- Outlook
  - ► We plan to build a web service initialized with the Wikipedia as source

# The End



Thank you!

## References

- R. Kern and M. Granitzer. Efficient linear text segmentation based on information retrieval techniques. In MEDES '09, pages 167–171. ACM, 2009. ISBN 978-1-60558-829-2.
- P. Koehn. Europarl: A parallel corpus for statistical machine translation. *MT summit*, 5:12–16, 2005.
- P. Liang, B. Taskar, and D. Klein. Alignment by agreement. In *Proceedings of the Human Language Technology Conference of the NAACL*, pages 104–111, June 2006.