

STYLE CHANGE DETECTION 2019

Can we uncover how many authors a document has?

Sukanya Nath Computer Science Department Université de Neuchâtel

PAN CLEF 2019, Lugano

CONTENTS

- What is Style Change Detection (SCD)?
- Use cases
- Challenges
- Dataset description
- Duplicate Sentences
- Strategy and Goal
- Threshold based Clustering algorithm
- Window Merge Clustering Algorithm
- Evaluation
- Conclusion

WHAT IS STYLE CHANGE DETECTION (SCD)?

Detect number of authors by determining unique writing styles of each author

PAN CLEF 2019, Lugano

Jay

Hamilton

Madison

USE CASES

- Establishing the authenticity of a document, fraud detection/ prevention
- Plagiarism detection
- Determine authorship of anonymous posts at forums
- Fake news detection
- Aid automatic speech transcription using transcripts

CHALLENGES

- No prior text sample for each author
- Some authors have contributed little
- Hard to determine style change boundaries

DATASET DESCRIPTION

- StackOverFlow Forum threads
- 2546 (training) / 1272 (validation) documents
- 1-5 authors
- Mean number of tokens: 1570

DUPLICATE SENTENCES

Boxplot grouped by authors

- Divide the text into paragraph sized windows
- Compare windows among each other using Most Frequent Words (MFW) and measure distance (e.g. Matusita)

- Divide the text into paragraph sized windows
- Compare windows among each other using Most Frequent Words (MFW) and measure distance (e.g. Matusita)

- Divide the text into paragraph sized windows
- Compare windows among each other using Most Frequent Words (MFW) and measure distance (e.g. Matusita)

- Divide the text into paragraph sized windows
- Compare windows among each other using Most Frequent Words (MFW) and measure distance (e.g. Matusita)

	W0	W1	W2	W3
W0	0	0.8	0.2	0.55
W1	0.8	0	0.56	0.42
W2	0.2	0.56	0	0.77
W3	0.55	0.42	0.77	0

Distance Matrix

between windows

	W0	W1	W2	W3
W0	0	0.8	0.2	0.55
W1		0	0.56	0.42
W2			0	0.77
W3				0

Distance Matrix

between windows

GOAL

	W0	W1	W2	W3
W0	0	0.8	0.2	0.55
W1		0	0.56	0.42
W2			0	0.77
W3				0

Distance Matrix

Clusters representing authors

Select the smallest distance from the distance matrix iteratively and use the corresponding windows to either

1. Create a new cluster

2. Add a node to an existing cluster (subject to Add Node Threshold)

3. Merge two clusters(subject to Merge Clusters Threshold)

Select the smallest distance from the distance matrix iteratively and use the corresponding windows to either

1. Create a new cluster

2. Add a node to an existing cluster (subject to Add Node Threshold)

3. Merge two clusters(subject to Merge Clusters Threshold)

Select the smallest distance from the distance matrix iteratively and use the corresponding windows to either

1. Create a new cluster

2. Add a node to an existing cluster (subject to Add Node Threshold)

3. Merge two clusters(subject to Merge Clusters Threshold)

Α

Select the smallest distance from the distance matrix iteratively and use the corresponding windows to either

1. Create a new cluster

2. Add a node to an existing cluster (subject to Add Node Threshold)

3. Merge two clusters(subject to Merge Clusters Threshold)

0.2

Β

Α

	W0	W1	W2	W3
W0	0	0.8	0.2	0.55
W1		0	0.56	0.42
W2			0	0.77
W3				0

THRESHOLD BASED CLUSTERING ALGORITHM (EXAMPLE)

	W0	W1	W2	W3
W0	0	0.8	0.2	0.55
W1		0	0.56	0.42
W2			0	0.77
W3				0

THRESHOLD BASED CLUSTERING ALGORITHM (EXAMPLE)

	W0	W1	W2	W3
W0	0	0.8	0.2	0.55
W1		0	0.56	0.42
W2			0	0.77
W3				0

	W0	W1	W2	W3
W0	0	0.8	0.2	0.55
W1		0	0.56	0.42
W2			0	0.77
W3				0

WINDOW MERGE CLUSTERING ALGORITHM

			-	
	W0	W1	W2	W3
W0	0	0.8	0.2	0.55
W1		0	0.56	0.42
W2			0	0.77
W3				0

1

	W0W2	W1	W3
W0 W2	0	0.72	0.65
W1		0	0.42
W3			0

3

	W0W2	W1W3
W0 W2	0	0.57
W1 W3		0

Initial Evaluation Results

	Training set			V	alidation so	et
Algorithm	Acc.	ΟCΙ	Rank	Acc.	ΟCΙ	Rank
ТВС	0.66	0.83	0.42	0.65	0.82	0.42
WMC	0.62	0.91	0.35	0.63	0.88	0.37
Combined Min.	0.65	0.92	0.36	0.66	0.9	0.38

DUPLICATE SENTENCES

Boxplot grouped by authors

Final Evaluation Results (using duplicates filter)

	Training			Validation			Official Test		
Algorithm	Acc.	ΟCΙ	Rank	Acc.	ΟCΙ	Rank	Rank	Acc.	ΟCΙ
ТВС	0.83	0.87	0.48	0.83	0.85	0.49	0.85	0.87	0.49
WMC	0.72	0.93	0.4	0.74	0.9	0.42	-	-	-
Combined Min.	0.70	0.93	0.39	0.72	0.91	0.41	-	-	-

- Demonstrated that it is possible to detect style changes in a text when no prior dataset is available
- Threshold Based Clustering algorithm performed the best out of the three models
- Splitting of Windows may be improved
- Measure cluster quality for improvement.

Sukanya Nath Adresse CH-2000 Neuchâtel sukanya.nath@unine.ch www.unine.ch

