FASTDOCODE: Finding Approximated Segments of N-Grams for Document Copy Detection

Lab Report for PAN at CLEF 2010

Gabriel Oberreuter goberreu@ing.uchile.cl Universidad de Chile - September 2010

Group members : Gastón L'Huillier, Sebastián Ríos and Juan D. Velásquez

DOCODE

- Project DOCODE: implement a plagiarism detection software.
- Sponsored by FONDEF & Sistemas Complejos de Ingeniería, Universidad de Chile.
 - Aimed at tackling the increasingly plagiarism problem on our country.
 - > Motivate research on this field.

Desirable Features:

- Designed for large amount of documents.
- Capable of finding obfuscated plagiarism.
- Results in reasonable time.
- Good precision.

PAN: Uncovering Plagiarism, Authorship, and Social Software Misuse

- Workshop & Competition on Plagiarism Uncovering.
- Includes lot's of documents.
- □Verbatim and obfuscated copy.
- Benchmark against other approaches.

Perfect opportunity and motivation for our purpose.

Our Approach

- Focused on external plagiarism detection.
- No cross-lingual consideration.
- Based on word bi-grams and word tri-grams.
- Selecting *samples* for each document in order to reduce compute time.

$1 \rightarrow$ Reducing the Search Space

$1 \rightarrow$ Reducing the Search Space

$1 \rightarrow$ Reducing the Search Space

- Based (again) on word tri-grams and word bi-grams.
- Preprocessing: a-z characters considered only.
- For each word the corresponding offset is indexed.
- Based on three considerations:
 - *1) Find a plagiarism "lead" or hint.*
 - 2) Consider the possible size of the plagiarism case.
 - *3)* Consider different obfuscation levels.

Experiment for 1 Step

Experiment presented for first algorithm: Reducing the

Search Space.

The idea: prove the benefits of selecting samples over using

all word n-grams for classifying a pair of documents.

Two variants for **benchmark**:

1) Exhaustive

2) Samples selected based on TF

Experiment for 1 Step

- Experimental dataset: 80 suspicious documents and 500 source documents from PAN'09 training corpus.
- Selected in order to preserve # of sources per suspicious document.

Copy Detector	Accuracy	Precision	Recall	F-measure	runtime (s)
Exhaustive 0	0,998	0,895	0,914	0,904	20568
Exhaustive 1	0,990	0,616	0,958	0,750	21103
Exhaustive 2	0,961	0,882	0,916	0,899	29655
SimTF 0	0,874	0,824	0,821	0,823	6959
SimTF 1	0,923	0,766	0,800	0,783	7451
SimTF 2	0,874	0,836	0,818	0,827	6615
SimAR 0	0,887	0,865	0,856	0,861	5393
SimAR 1	0,899	0,859	0,852	0,855	5596
SimAR 2	0,849	0,828	0,868	0,847	5231

Copy Detector	Accuracy	Precision	Recall	F-measure	runtime (s)
Exhaustive 0	0,998	0,895	0,914	0,904	20568
Exhaustive 1	0,990	0,616	0,958	0,750	21103
Exhaustive 2	0,961	0,882	0,916	0,899	29655
SimTF 0	0,874	0,824	0,821	0,823	6959
SimTF 1	0,923	0,766	0,800	0,783	7451
SimTF 2	0,874	0,836	0,818	0,827	6615
SimAR 0	0,887	0,865	0,856	0,861	5393
SimAR 1	0,899	0,859	0,852	0,855	5596
SimAR 2	0,849	0,828	0,868	0,847	5231

Copy Detector	Accuracy	Precision	Recall	F-measure	r <mark>untime (s</mark>)
Exhaustive 0	0,998	0,895	0,914	0,904	20568
Exhaustive 1	0,990	0,616	0,958	0,750	21103
Exhaustive 2	0,961	0,882	0,916	0,899	29655
SimTF 0	0,874	0,824	0,821	0,823	6959
SimTF 1	0,923	0,766	0,800	0,783	7451
SimTF 2	0,874	0,836	0,818	0,827	6615
SimAR 0	0,887	0,865	0,856	0,861	5393
SimAR 1	0,899	0,859	0,852	0,855	5596
SimAR 2	0,849	0,828	0,868	0,847	5231

Copy Detector	Accuracy	Precision	Recall	F-measure	runtime (s)
Exhaustive 0	0,998	0,895	0,914	0,904	20568
Exhaustive 1	0,990	0,616	0,958	0,750	21103
Exhaustive 2	0,961	0,882	0,916	0,899	29655
SimTF 0	0,874	0,824	0,821	0,823	6959
SimTF 1	0,923	0,766	0,800	0,783	7451
SimTF 2	0,874	0,836	0,818	0,827	6615
SimAR 0	0,887	0,865	0,856	0,861	5393
SimAR 1	0,899	0,859	0,852	0,855	5596
SimAR 2	0,849	0,828	0,868	0,847	5231

Copy Detector	Accuracy	Precision	Recall	F-measure	runtime (s)
Exhaustive 0	0,998	0,895	0,914	0,904	20568
Exhaustive 1	0,990	0,616	0,958	0,750	21103
Exhaustive 2	0,961	0,882	0,916	0,899	29655
SimTF 0	0,874	0,824	0,821	0,823	6959
SimTF 1	0,923	0,766	0,800	0,783	7451
SimTF 2	0,874	0,836	0,818	0.827	6615
SimAR 0	0,887	0,865	0,856	0,861	5393
SimAR 1	0,899	0,859	0,852	0,855	5596
SimAR 2	0,849	0,828	0,868	0,847	5231

General Results @ PAN

- Comparison computed on two eight-core Servers, each with 6 GB of RAM.
- Java Implementation.
- Reducing Search Space:

~20 Hours.

Finding Plagiarized Passages:
~12 Hours.

Conclusions

• Word bi-grams and word tri-grams are good tokens for plagiarism uncovering.

- Search Space Reduction adapted to plagiarism.
- Sampling to speed up the process: 4x on current corpus, at little cost of recall.

• Some obfuscated plagiarism left undetected.

Future Work

- Grid optimization over the parameters.
- Further investigation of *sampling* strategies for document fingerprinting.
- Synonym consideration for highly obfuscated plagiarism cases.
- Use of char n-grams with this approach for intrinsic plagiarism detection.
- Cross-language consideration.
- Other ways to increase compute time.

FASTDOCODE: Finding Approximated Segments of N-Grams for Document Copy Detection

Lab Report for PAN at CLEF 2010

Gabriel Oberreuter goberreu@ing.uchile.cl Universidad de Chile - September 2010

Group members : Gastón L'Huillier, Sebastián Ríos and Juan D. Velásquez