

10th Author Profiling task at PAN Profiling Irony and Stereotype Spreaders on Twitter

PAN-AP-2022 CLEF 2022 Bologna, 5-8 September

Reynier Ortega Bueno - Universitat Politècnica de València Berta Chulvi - Universitat Politècnica de València Francisco Rangel - Symanto Research Paolo Rosso - Universitat Politècnica de València Elisabetta Fersini - Università Degli Studi di Milano-Bicocca

Introduction

Author profiling aims at identifying personal traits such as age, gender, personality traits, native language, language variety... from writings?

This is crucial for:

- Marketing.
- Security.
- Forensics.

Profiling Harmful Information Spreaders:

2019 - Profiling Bots
2020 - Profiling Fake News Spreaders
2021 - Profiling Hate Speech Spreaders
2022 - Profiling Irony and Stereotypes
Spreaders

Given a Twitter feed, determine whether its author is **keen to spread irony or not**, with special focus on users who use irony towards **stereotypes**.

Language:

English

Methodology

- 1. Defining Taxonomy and Stereotypes Categories:
 - a. We examine the "target minority" field of the SBIC [Sap et al., 2020]
 - b. We identify 600 unique labels that could be considered a social category in SBIC, and classify them into 17 categories:

(1) national majority groups;
(2) illness/health groups;
(3) age and role family groups;
(4) victims;
(5) political groups;
(6) ethnic/racial minorities;
(7) immigration/national minorities;
(8) professional and class groups;
(9) sexual orientation groups;
(10) women;
(11) physical appearance groups;
(12) religious groups;
(13) style of life groups;
(14) non-normative behaviour groups;
(15) man/male groups;
(16) minorities expressed in generic terms;
(17) white people

- 2. Tweet Retrieval
 - a. We retrieve tweets containing at least one of the labels included in **categories 5 to 14** of the taxonomy (with and without the hashtags irony and sarcasm).
 - b. We select users with more tweets accomplishing previous conditions.

Methodology

- 3. Annotation Process
 - a. **Irony**: annotators were asked to mark the tweets where the user "express the opposite of what was saying as a disguised mockery". If the user had **more than 5 ironic tweets**, it was labelled as ironic.
 - b. **Stereotypes**: annotators were asked to check if the social categories in the tweets were used to refer to a social group by associating them with a homogenising image of the category (e.g., as if all gays or Muslims were the same and could be described with that word). If the user had **more than 5 tweets with stereotypes**, it was labelled accordingly.
- 4. Corpus Construction
 - a. Two independent annotators labelled the data (IAA 0.7093).
 - b. A third annotator sorted out disagreements.
 - c. For each user, we provide 200 tweets.

Statistics

	IRONIC		NON-IRONIC				
	Stereotypes	Non-stereotypes	Total	Stereotypes	Non-stereotypes	Total	Total
Training	140	70	210	140	70	210	420
Test	60	30	90	60	30	90	180
Total	200	100	300	200	100	300	600

Number of users per class and set. Each user contains 200 tweets.

Evaluation measures

Since the dataset is completely balanced for the two target classes, ironic vs. non-ironic, we have used the **accuracy** measure and ranked the performance of the systems by that metric.

Baselines

CHAR 2-GRAMS + RF	Bigrams with Random Forest
WORD 1-GRAMS + LR	Bag of words with Logistic Regression
BERT + LSTM	We represent each tweet in the profile utilising pretrained Bert-base model. Later, we fed an LSTM with these vectors as input.
Symanto (LDSE)	This method represents documents on the basis of the probability distribution of occurrence of their words in the different classes. The key concept of LDSE is a weight, representing the probability of a term to belong to one of the different categories: irony spreader / non-spreader. The distribution of weights for a given document should be closer to the weights of its corresponding category. LDSE takes advantage of the whole vocabulary

N'22

Participation

(P)

65 participants 32 working notes 12 countries

What kind of ...

... did the teams perform?

Author Profiling

Approaches - Preprocessing Twitter elements (RT, VIA, FAV) Giglou et al.; Cao et al.;

Twitter elements (RT, VIA, FAV)	Giglou et al.; Cao et al.; Lin et al.; Jang; Xu et al.; Wang & Ning; Zhang & NIng; Sagar & Varma; Hazrati et al.
Emojis and other non-alphanumeric chars	Wang & Ning; Zhang & Ning; Hazrati et al.; Butt et al.; Jian & Huang
Lemmatisation	Haolong & Sun
Punctuation signs	Giglou et al.; Lin et al.; Xu & Ning; Wang & Ning; Hazrati et al.; Dong et al.
Numbers	Xu & Ning; Hazrati et al.; Butt et al.
Lowercase	Giglou et al.; Xu & Ning; Butt et al.; Dong et al.; Siino & Cascia; Mangione & Garbo; Zengyao & Zhongyuan; Croce et al.; Herold & Castro
Stopwords	Giglou et al.; Hazrati et al.; Butt et al.
Infrequent terms	Giglou et al.; Wang & Ning; Zengyao & Zhongyuan
X ² with PMI and TF/IDF	Ikae
I/NI labels to the end of the tweets	Jian & Huang
GloVe to filter out features	Haolong & Sun

Approaches - Features Stylistic features: Nik

Stylistic features: - Vocabulary size - Number of tokens - Tweet length - Number of hashtags, mentions, URLS - Number of emojis 	Nikolova et al.
N-gram models	Sagar & Varma; Butt et al.; Herold & Castro; Ikae; Nikolova et al.
Emotional and personality features	Butt et al.
TextVectorizer	Croce et al.
Embeddings	Dong et al.; Yang et al.
Transformers	
BERT	Cao et al.; Lin et al.; Xu & Ning; 71; Hazrati et al.; Jian & Huang; Zengyao & Zhongyuan; Wentao & Kolossa; Rodriguez & Barroso
SBERT	Tahaei et al.
BERTTweet	Wang & Ning

Approaches - Features

Transformers + others	
BERT & Twitter RoBERTa + LM HateXPlain	Mathew et al.
SBERT + emojis	Tahaei et al.
SBERT + psychometrics, emotions and irony	Tavan et al.
BERT + TF-IDF n-grams	Das et al.; Gómez & Parres
SBERT + graph-based & one-hot embeddings	Giglou et al.
+ Ironic-, contextual-, psychometric-related features fine-tuned with datasets annotated with sentiment/emotions from Kaggle	Tavan et al.
Sentence Transformers + n-grams + stylistic	Jang
BERT & RoBERTa + FastText + stylistic	Díaz et al.

Approaches - Features

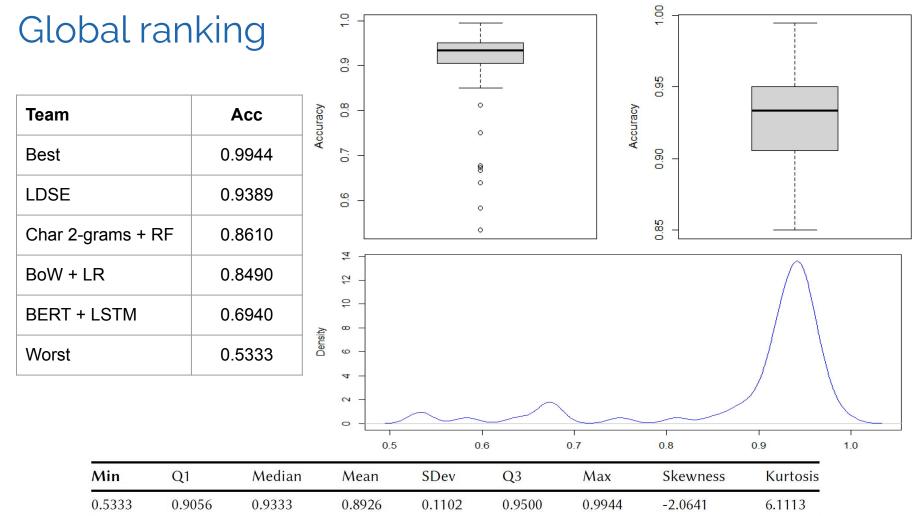
CNN	Díaz et al.
CNN + TF-IDF 1-grams + BiGRU	Haolong & Sun
Sequence probabilities + n-grams + GPT2 & DistilGPT2	Huang
Irony identification at tweet level by combining: 1) structural features 2) sentiment words 3) fine-grained emotions by means of several lexicons	Hernández & Montes

Approaches - Methods Logistic regression Butt et al.; Das e

Logistic regression	Butt et al.; Das et al.
Random Forest	Sagar & Varma; Ikae; Nikolova et al.; Hernández & Montes
Bayes	Huang
Multilayer Perceptron	Hazrati et al.
Gradient Booster Classifier	Tavan et al.
k-Nearest Neighbours	Rodriguez & Barroso
Ensembles (trad. classifiers)	Zengyao & Zhongyuan; Herold & Castro; Tavan et al.
Ensembles (trad. Class + DL)	Siino & Cascia; Croce et al.

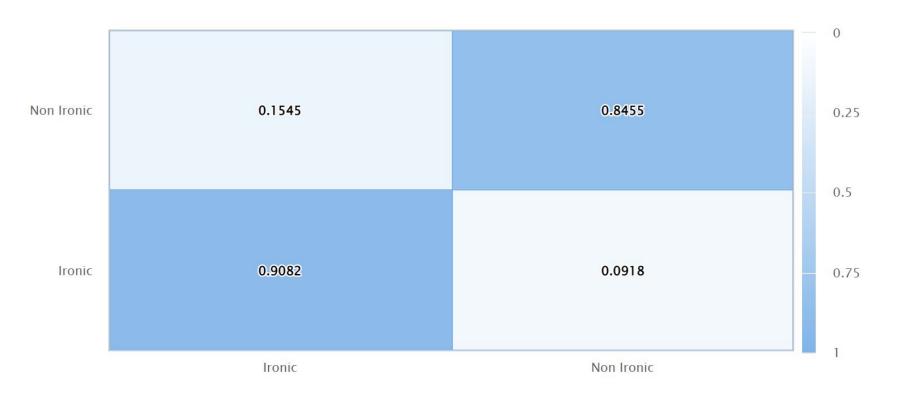
Approaches - Methods Linear Feed Forward Networks Tahaei et al.

Linear Feed Forward Networks	Tahaei et al.
CNN	Dong et al.; Mangione & Garbo; Wentao & Kolossa
GCNN	Giglou et al.
bi-LSTM + CNN	Yang et al.
Fully-connected networks	Haolong & Sun; Labadie & Castro; Díaz et al.
AutoKeras; AutoGluon	Wang & Ning; Xu & Ning; Zhang & Ning
BERT + Decision Rules	Jian & Huang
BERT + SVM, MLP, Gaussian NB & RF	Rodriguez & Barroso
BERT + CNN, LSTM, att. layer	Gómez & Parres
BERT & DistilBERT + RF & SVM	Jang
BERT + voting classifier	Cao et al.; Lin et al.



PAN'22

Confusion matrix



Corpus analysis

Does these high results mean that the corpus is biased?

We have conducted a deep analysis of the corpus from five different angles:

- **Topics** used by ironic and non-ironic users.
- Twitter elements usage.
- Language style: categorical vs. narrative.
- Emotionality: activation, imaginary, pleasantness.
- Personality type and communication style of the users.

Topic-based analysis

Two-fold analysis:

Determining the set of words that are highly polarized according to the indexes introduced in [Poletto et al., 2021]: Polarized Wiredness Index (PWI) which takes into account how polarized the words are in each class in the corpus (irony and non-irony).
 Determining the set of unique words in each class and analysing how this vocabulary impacts the learning process.

PWI No-Irony	PWI Irony	- We identified 1,379 words
aboriginals, ados, africans, ameri- cas, anti-coup, anti-trans, archdiocese, barty, battalion, binance, biolabs, bipoc, bnb, breyer, bsc, buccaneer, buddhas, bulgaria, calm, cardinal, charlottesville, chile, chow, cisgender, defi	:-(, :-),:P, ;), ;-), abound, alarmist, an- tizionist, appointee, assurance, aws, bama, bhakts, bound, brampton, carb, cathie, cda, conway, corey, darn, desert, djt, dowry, du30, duterte	which only appear in one class. - In the irony class, we found 334 unique terms, whereas, in the class non-irony, we identified 1,045 unique terms.
Deleted to other in	Deleted to realities and reliation and encode	

Related to ethnic

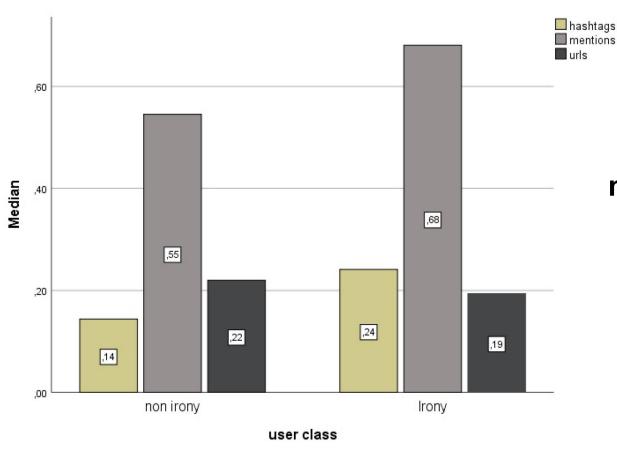
Related to politics and religion... and emojis

- We trained an SVM and RF classifiers considering as features the words in this vocabulary, obtaining respectively an accuracy of 0.8817 and 0.8763.

Highlights: there seems that there is a topic bias, but since there are also stylistic elements that vary between classes, this bias may be inherent in the type of users per class.

AN'22

Twitter elements analysis



Ironic people write shorter tweets, use more hashtags, more mentions, and fewer URLs than non-ironic ones.

For all of them, the Mann-Whitney test is significant in both sets (training and test); p<.001

rofiling

Language style analysis

POS tagging with Freeling, and calculation of the Categorical (+) vs. Narrative (-) style inspired in [Nisbett et al., 2001] and composed as:

NOUN + ADJ + PREP - VERB - ADV - PERSPRON

- Categorical style is used to express ideas and concepts, whereas narrative is used to tell stories.

Highlights:

Non-ironic users use significantly more a categorical style, while ironic users utilise more a narrative style (Mdn=-0.99; U=15,834; p<.001).
Language style is topic agnostic: regardless of the topic, there are significant differences in the way ironic and non-ironic users employ language.

ironic non ironic N = 300N = 300Rango promedio = 203,28 Rango promedio = 397,72 10,00 10.00 Categorical vs narrative index 5.00 5.00 ,00 .00 -5,00 -5.00 -10.00 -10.0060 20 n 20 60 40

Frecuency

Frecuency

Categorical vs narrative index

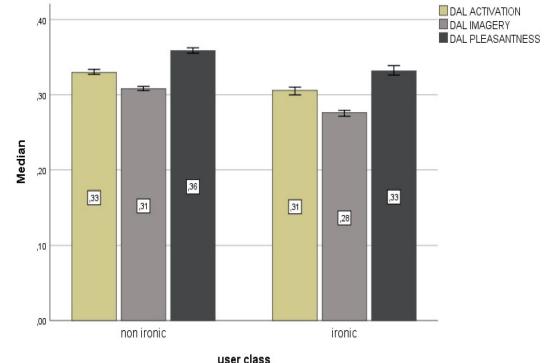
Emotions analysis

The new Dictionary of Affect in Language (DAL) [Whissell, 1989]:

- List of 8,742 words.
- Annotated by 200 naïve volunteers.
- Three dimensions: activation (active vs. passive), imaginary (easy vs. difficult to imagine), and pleasantness (unpleasant vs. pleasant).

Highlights:

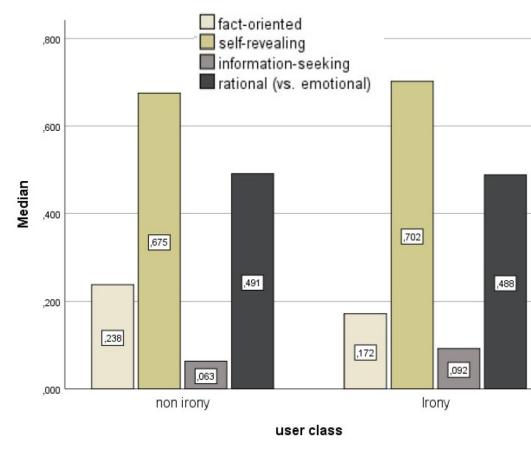
- Non-ironic users present higher scores in the three emotional dimensions than ironic ones.



Error bars: 95% CI

For all of them, the Mann-Whitney test is significant in both sets (training and test); p<.001

Communication styles



Symanto API* to obtain the users' personality type and communication styles [Stajner et al., 101]:

- The personality type refers to the way the person behaves in a specific interaction from the emotional vs rational point of view.

- Action-seeking, defined as direct or indirect requests, suggestions, and recommendations that expect action from other people.

- Fact-oriented, where the user utilises factual and objective statements.

- Self-revealing, when the users share personal information or experiences.

- Information-seeking, defined as direct or indirect questions searching for information.

Highlights:

- Ironic and non-ironic users do not differ in action-seeking but the do in the other four styles.

- Ironic users use less the fact-oriented style and more a self-revealing and information-seeking style.

- Non-ironic users are more emotional and less rational than ironic ones.

*https://rapidapi.com/collection/symanto-symanto-default-apis

Subtask

The aim of the **Profiling Stereotype stance on Ironic Authors** subtask is to detect whether ironic users employed stereotypes to hurt the target or to somehow defend it.

Language:

English

- If Australia doesn't "DEPORT" 100K **Muslims** a year, what do you propose? Concentration camps? #sarcasm @whiteygeorge @BruhnRose [against]
- @OccupyAIPAC @jvplive Oh. How wonderful a Jew actually said something bad about Israel. I'm sooo impressed. #shock #sarcasm #hebrew [against]
- @cupcakekitty09@laureldavilacpa I'm with you. I think each state should have it's own wall. You never know where those pesky **immigrants** are going to show up.#sarcasm **[in-favour]**
- @ksecus Didn't you know if they rub against you that you can become **gay**?! Talk about sharing a foxhole!!! #sarcasm **[in-favour]**

Corpus

Methodology

- 1. We selected those authors that were annotated as ironic and spreaders of stereotypes.
- 2. For each author, only the tweets marked as ironic and using stereotypes were annotated with their stance.
- 3. We asked the annotators to rely on their own perspectives on whether the tweets are in favour or against the mentioned social category, with no other guidance.
- 4. The overall stance of an author corresponds to the majority class at tweet level.
- 5. The IAA between the first two annotators was 0.645.
- 6. A third annotator sorted out disagreements.

	IN FAVOUR	AGAINST	Total	
Training	46	94	140	
Test	12	48	60	
Total	58	142	200	

The performance of the systems is evaluated using the macro averaged F1 measure (F_Macro).

We also analyse the F1-measure per class to study more in depth the behaviour of the systems.

Baselines

CHAR 3-GRAMS + RF	Trigrams with Random Forest
WORD 2-GRAMS + SVM	Bigrams with Support Vector Machine
Symanto (LDSE)	This method represents documents on the basis of the probability distribution of occurrence of their words in the different classes. The key concept of LDSE is a weight, representing the probability of a term to belong to one of the different categories: irony spreader / non-spreader. The distribution of weights for a given document should be closer to the weights of its corresponding category. LDSE takes advantage of the whole vocabulary

Results

RANK	TEAM	RUN	F1_Macro	F1_F	F1_A	ACC
	LDSE		0.7600	0.6000	0.9200	0.8560
1	dirazuherfa	3	0.6248	0.381	0.8687	0.7833
2	dirazuherfa	4	0.5807	0.3571	0.8043	0.7
	RF + char trigrams		0.5673	0.25	0.8846	0.8000
3	toshevska	2	0.5545	0.2353	0.8738	0.7833
4	dirazuherfa	1	0.5433	0.3226	0.7640	0.6500
5	JoseAGD	1	0.5312	0.2500	0.8125	0.7000
6	tamayo	1	0.4886	0.2500	0.7273	0.6000
7	dirazuherfa	2	0.4876	0.2143	0.7609	0.6333
8	tamayo	2	0.4685	0.1053	0.8317	0.7167
	SVM+word bigrams		0.4685	0.1053	0.8317	0.7167
9	AmitDasRup	1	0.4563	0.1935	0.7191	0.5833
10	toshevska	4	0.4444	0.0000	0.8889	0.8000
10	taunk	1	0.4444	0.0000	0.8889	0.8000
12	toshevska	3	0.4393	0.0000	0.8785	0.7833
13	AmitDasRup	2	0.4357	0.1818	0.6897	0.5500
14	toshevska	1	0.4340	0.0000	0.8679	0.7667
15	fernanda	1	0.3119	0.2545	0.3692	0.3167

Methods:

- dirazuherfa: Emotion-based approach combining structural-, sentiment-, and emotion-based features.

- toshevska: Deep graph convolutional neural network.

- JoseAGD: UMUTextStats + FastText + BERT + RoBERTa & a fully-connected network.

- tamayo: RoBERTa + KNN to prototype creation.

- AmitDasRup: BERT + TFIDF & LR.
- taunk: TFIDF BoW + trad. ML methods.
- fernanda: n-grams combination + voting.

Results

RANK	TEAM	RUN	F1_Macro	F1_F	F1_A	ACC
	LDSE		0.7600	0.6000	0.9200	0.8560
1	dirazuherfa	3	0.6248	0.381	0.8687	0.7833
2	dirazuherfa	4	0.5807	0.3571	0.8043	0.7
	RF + char trigrams		0.5673	0.25	0.8846	0.8000
3	toshevska	2	0.5545	0.2353	0.8738	0.7833
4	dirazuherfa	1	0.5433	0.3226	0.7640	0.6500
5	JoseAGD	1	0.5312	0.2500	0.8125	0.7000
6	tamayo	1	0.4886	0.2500	0.7273	0.6000
7	dirazuherfa	2	0.4876	0.2143	0.7609	0.6333
8	tamayo	2	0.4685	0.1053	0.8317	0.7167
	SVM+word bigrams		0.4685	0.1053	0.8317	0.7167
9	AmitDasRup	1	0.4563	0.1935	0.7191	0.5833
10	toshevska	4	0.4444	0.0000	0.8889	0.8000
10	taunk	1	0.4444	0.0000	0.8889	0.8000
12	toshevska	3	0.4393	0.0000	0.8785	0.7833
13	AmitDasRup	2	0.4357	0.1818	0.6897	0.5500
14	toshevska	1	0.4340	0.0000	0.8679	0.7667
15	fernanda	1	0.3119	0.2545	0.3692	0.3167

Highlights:

- Low performance in the "in-favour" class, whereas high performance in the "against" class.

- Three main difficulties:

i) The inherent complexity of profiling the stance of ironic authors that employ stereotypes.

ii) the short size of the corpus.

iii) the imbalance between "in-favour" and "against" classes which made challenging the learning process.

<u>Author Profiling</u>

Subtask take away

This task opens a new way to study ironic language to perpetuate stereotypes and constitutes a starting point for profiling authors who frame aggressiveness, toxicity and messages of hatred towards social categories such as immigrants, women and the LGTB+ community, using an implicit way to convey hate speech employing stereotypes.

PAN'22

Conclusions

- Several approaches to tackle the task:
 - Transformers (BERT-based), also combined with traditional representations and methods, obtained the highest results.
- Results:
 - Over 89% on average.
 - Best (99.44%): Yu et al. BERT + CNN
- Error analysis:
 - False positives (non-irony spreaders as spreaders): 15.45%
 - False negatives (irony spreaders as non-spreaders): 9.18%

Conclusions

One of the main challenges of this task was to contemplate the use of stereotypes in a broad sense, that is, not focusing on a target group but considering those users who explain what happens in their environment by intensively using social categories.

Behind this theoretical approach there is the idea that prejudice is fundamentally a vision of the world that homogenizes people on the basis of their groups of origin or affiliation. A vision of the world that considers that these group affiliations are the main cause of the people's behaviours and could explain social or economic problems.

It is evident that to embrace stereotyping towards many social groups may have introduced a topic bias, although certainly when we analyse stereotypes towards a single group, the type of discourse changes if what is held is a stereotypical view of a group (certain social categories are brought up in order to present certain arguments). For example, gays are brought up in a moral discourse and immigrants are evoked in an economic or legal discussion, then it is important to take into account this association between target groups and topics.

• Corpus analysis illustrates that Ironic and non-Ironic users significantly differ not only in the use of Twitter elements but also in the indices used to characterise language, use of emotions, and communication styles, what could explain the high scores of the classifiers, and it opens the door to future research in order to characterise better the use of irony.

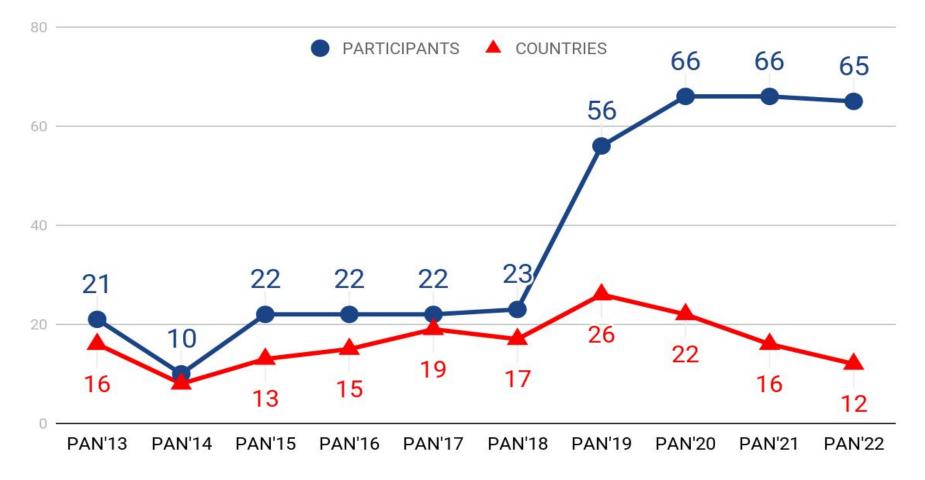
PAN'22

Conclusions

Looking at the results, the corpus analysis and the error analysis, we can conclude:

- It is feasible to automatically discriminate between Irony and non-Irony Spreaders with high precision
 - ...even when only textual features are used.
- Not only are the topics addressed by both types of users significantly different but also other elements such as the number of emojis they use, the number of users they mention, the number of hashtags they use, the number of URLs they share, their writing style, the emotions they convey or even their personality and communication style.
- We have to bear in mind false positives since they are almost double than false negatives, and misclassification might lead to ethical or legal implications.

Task Impact



	rofiling
symanto psychology ai	
prs	
symanto psychology ai	This ye
	prs

This year, the winners of the task are:

 Wentao Yu, Benedikt Boenninghoff, and Dorothea Kolossa, Institute of Communication Acoustics, Ruhr University Bochum, Germany PAN'23: Profile cryptocurrency influencers in social media from a low-resource perspective:

- Low-resource influencer profiling.
- Low-resource influencer interest identification.

2

• Low-resource influencer intent identification.

On behalf of the author profiling task organisers:

Thank you very much for participating and hope to see you next year!!