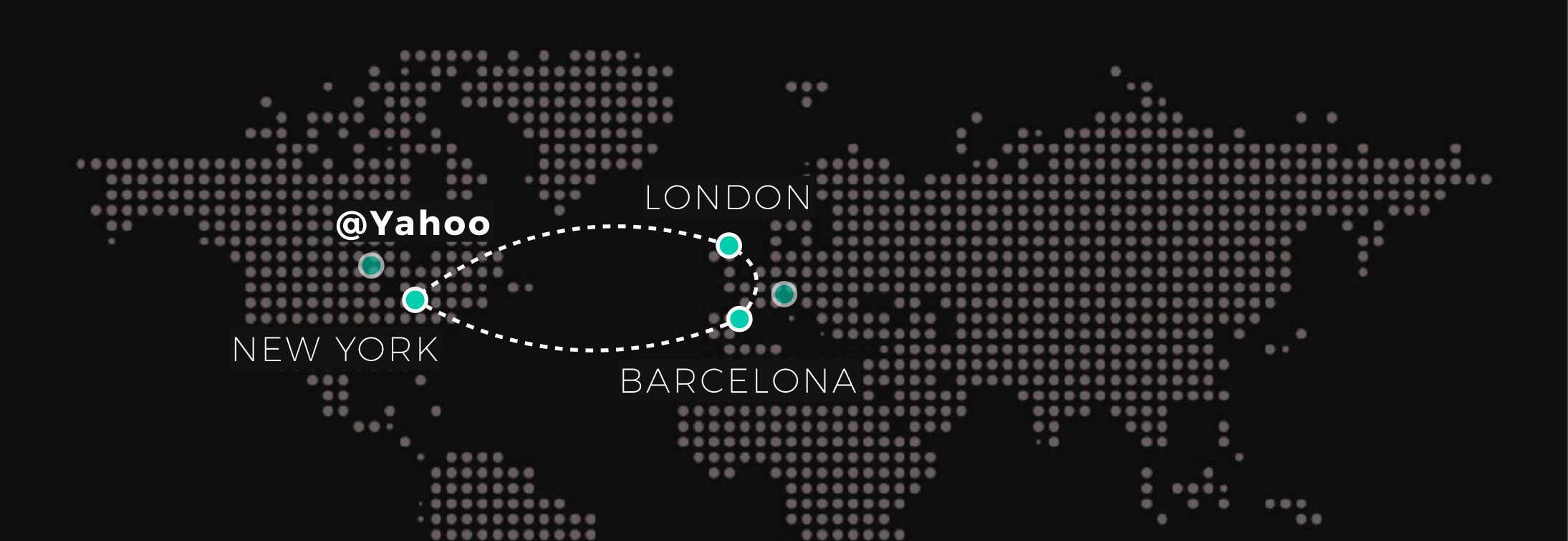


Few words about me

DISTRIBUTED SYSTEMS
RECOMMENDER SYSTEMS

NETWORK SCIENCE
HUMAN COMPUTING

CROWDSOURCING



....

...

.......

.....

00000

000

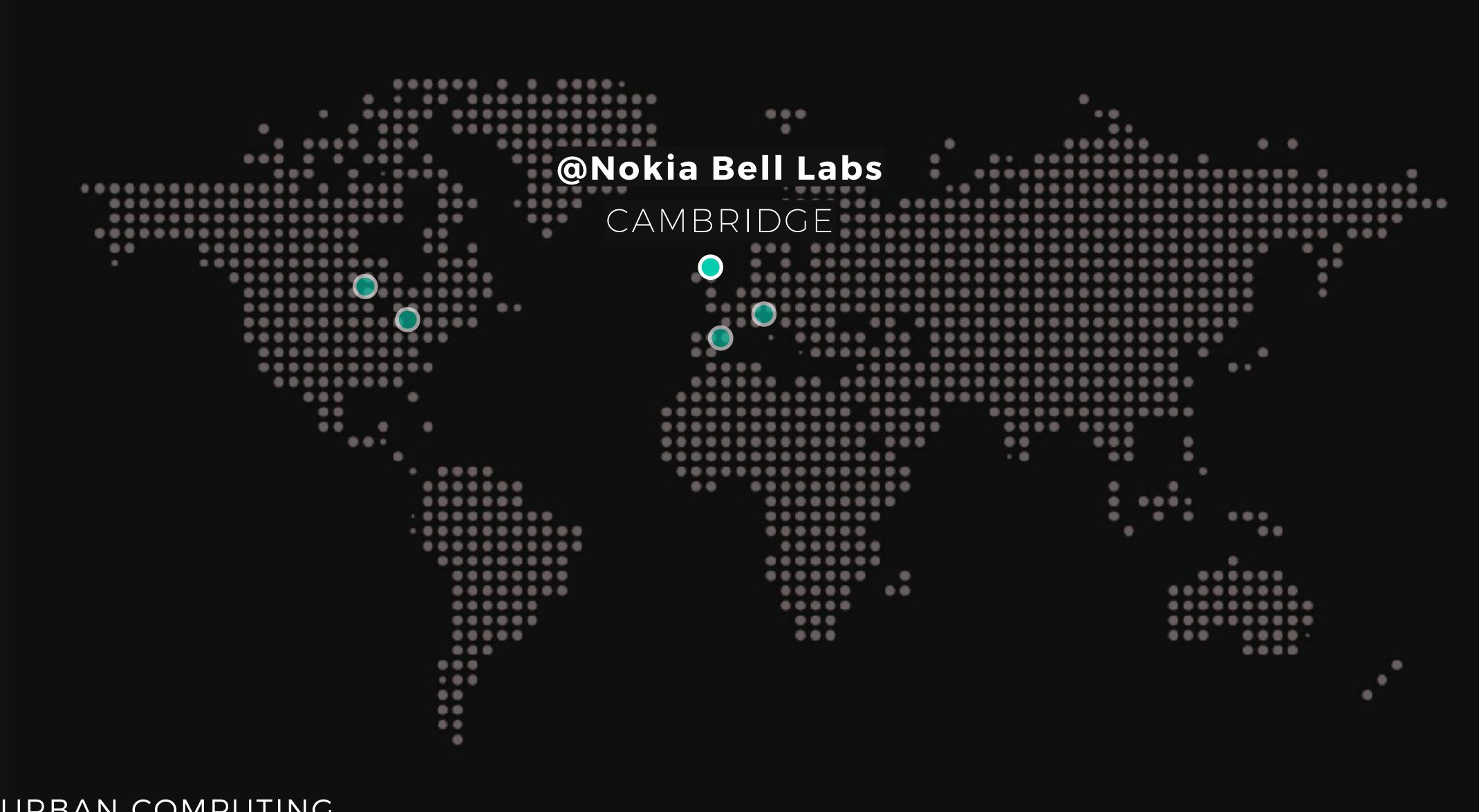
......

URBAN COMPUTING
MACHINE LEARNING

BEHAVIOURAL STUDIES
COMPUTATIONAL *

000000

....



URBAN COMPUTING
COMPUTATIONAL SOCIAL SCIENCE

World Urbanization Prospects: The 2014 Revision @United Nations

HUMANITY IS URBAN

30% 54%

1950

2014

66%

2050

INFORMATICS ARE PERVASIVE

SHAKESPEARE, CORIOLANUS

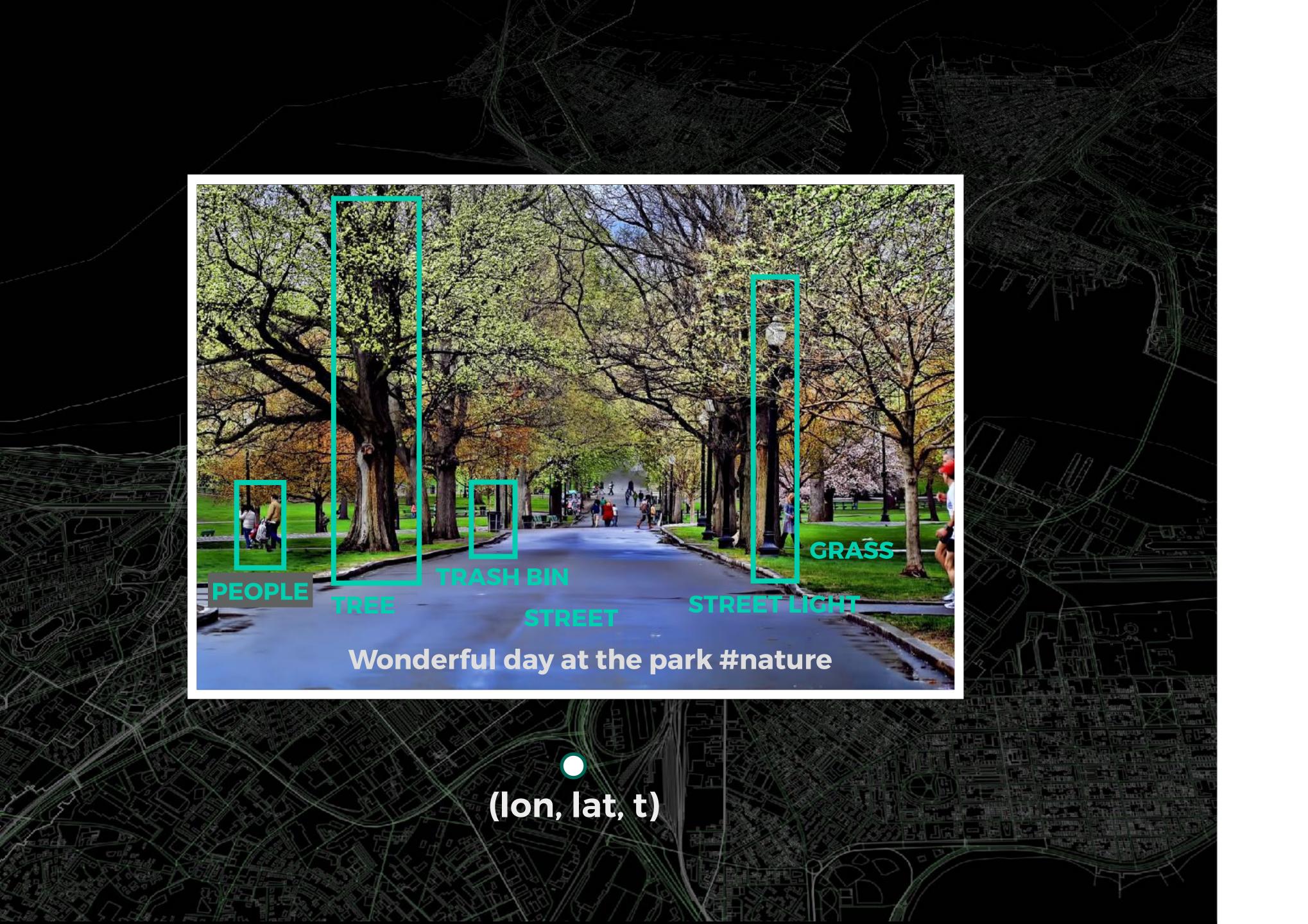
"WHAT IS A CITY BUT PEOPLE?"

-

SOCIAL.HEALTHY.HAPPY

HOW DIGITAL DATA CAN BE USED TO

- 1. STUDY URBAN PHENOMENA AT SCALE
- 2. PROFILING



WHERE

coordinates

WHEN

timestamp

WHAT

text+visual+audio

WHO

author

WHY

intent, context

Sensing

HAPPY MAPS

• • • • • • • • • • •

GET THE SHORT AND PLEASANT ROUTE

HyperText 2014

SHORTEST

SHORT and PLEASANT

© COLLECT URBAN PERCEPTIONS

UrbanGems: Crowdsourcing Quiet, Beauty and Happiness

Change Question

Which place do you find more beautiful?

Progress: 0/10

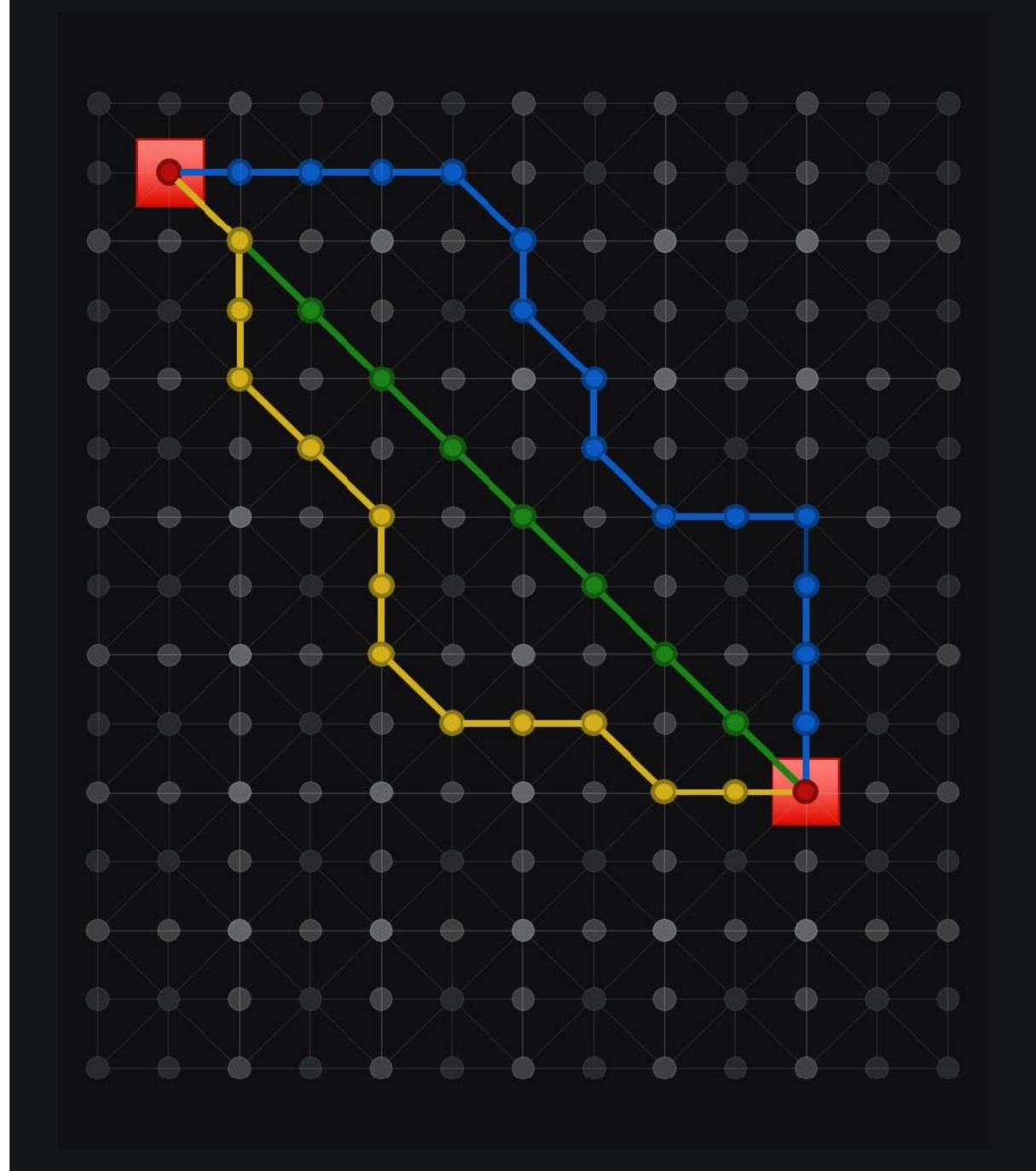
Picture Info

Picture Info

Can't Tell

HTTP://URBANGEMS.ORG/

- © COLLECT URBAN PERCEPTIONS
- GENERATE EMOTIONALLY-AWARE ROUTES



- © COLLECT URBAN PERCEPTIONS
- GENERATE EMOTIONALLY-AWARE ROUTES
- S EVALUATE

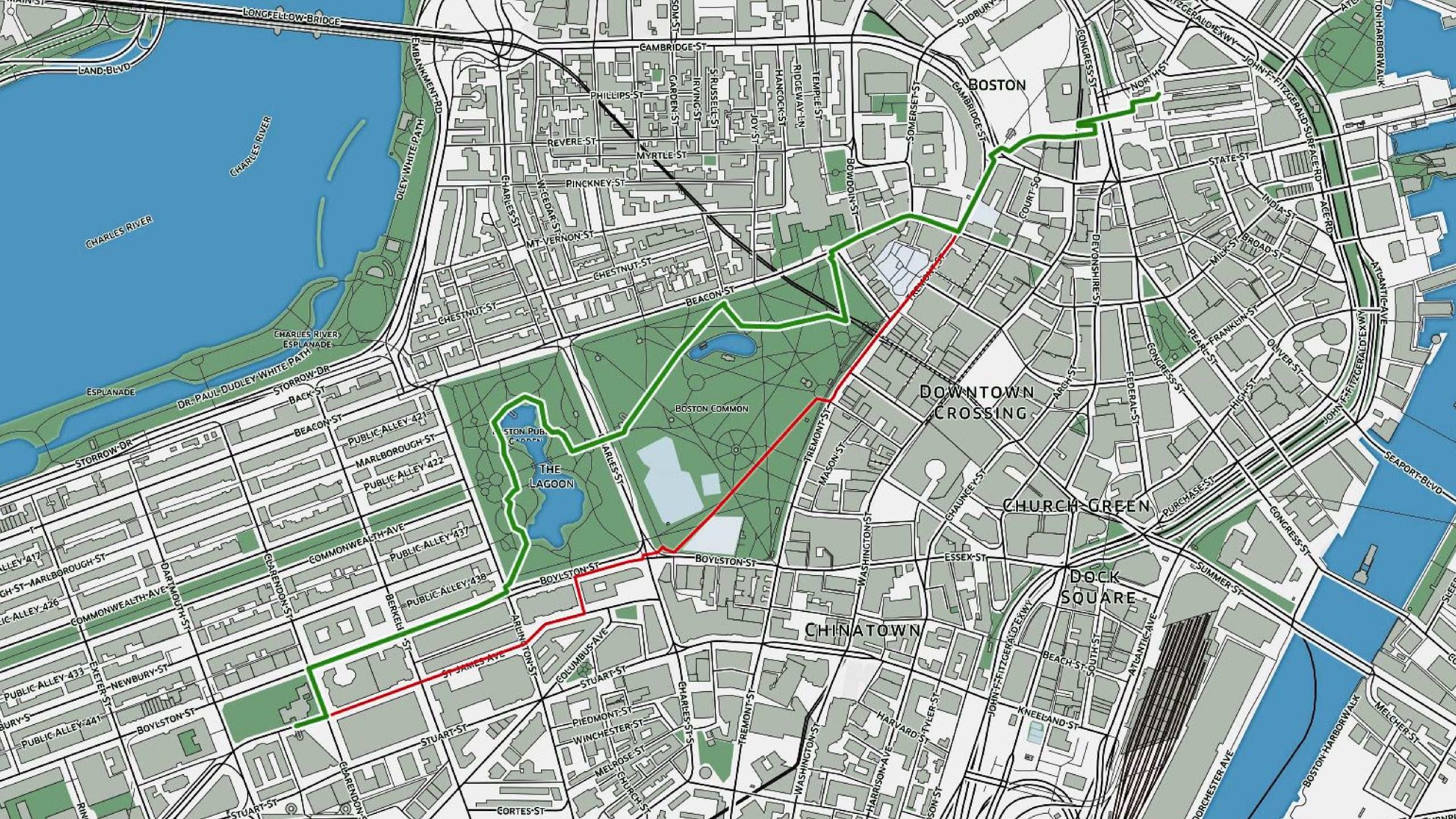
- Survey in London
 - -Path from Euston Square and Tate Modern
 - -3 situations (happy, quiet, beauty scenarios)
 - -4 paths to vote on a Likert scale (paths are unlabeled)

- © COLLECT URBAN PERCEPTIONS
- GENERATE EMOTIONALLY-AWARE ROUTES
- **EVALUATE**
- MODEL AESTHETICS WITH SOCIAL MEDIA DATA

7M geolocated photos in London

METHOD

- -For each street segment we extract:
 - -Number of **pictures** (density), number of **views**, of **favorites**, of **comments**, and **tags**
 - -Tags (LIWC dictionary, 72 categories)
- -Extract features that are significantly correlated with beauty scores
 - -Example: density, 'posemo', 'negemo', 'swear', 'anx' (anxiety), 'sad', and 'anger' LIWC categories
- -Build a **model** to predict beauty



SMELLY MAPS

.

HOW DOES A CITY SMELL?

[ICWSM 2015]

Humans discriminates millions of odors

Yet, city planning can discriminate only a few bad odors

Why this negative perspective?

Smell Walks

Amsterdam, Pamplona, Glasgow, Edinburgh, Newport, Paris, New York, Singapore

DATA

London + Barcelona

17 M

436K

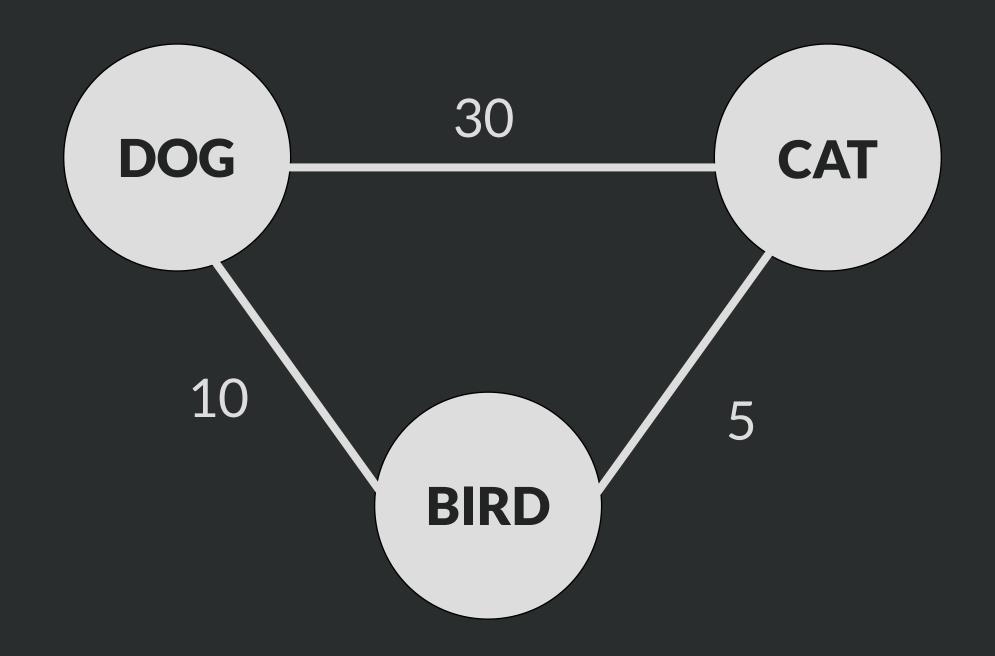
1.7M

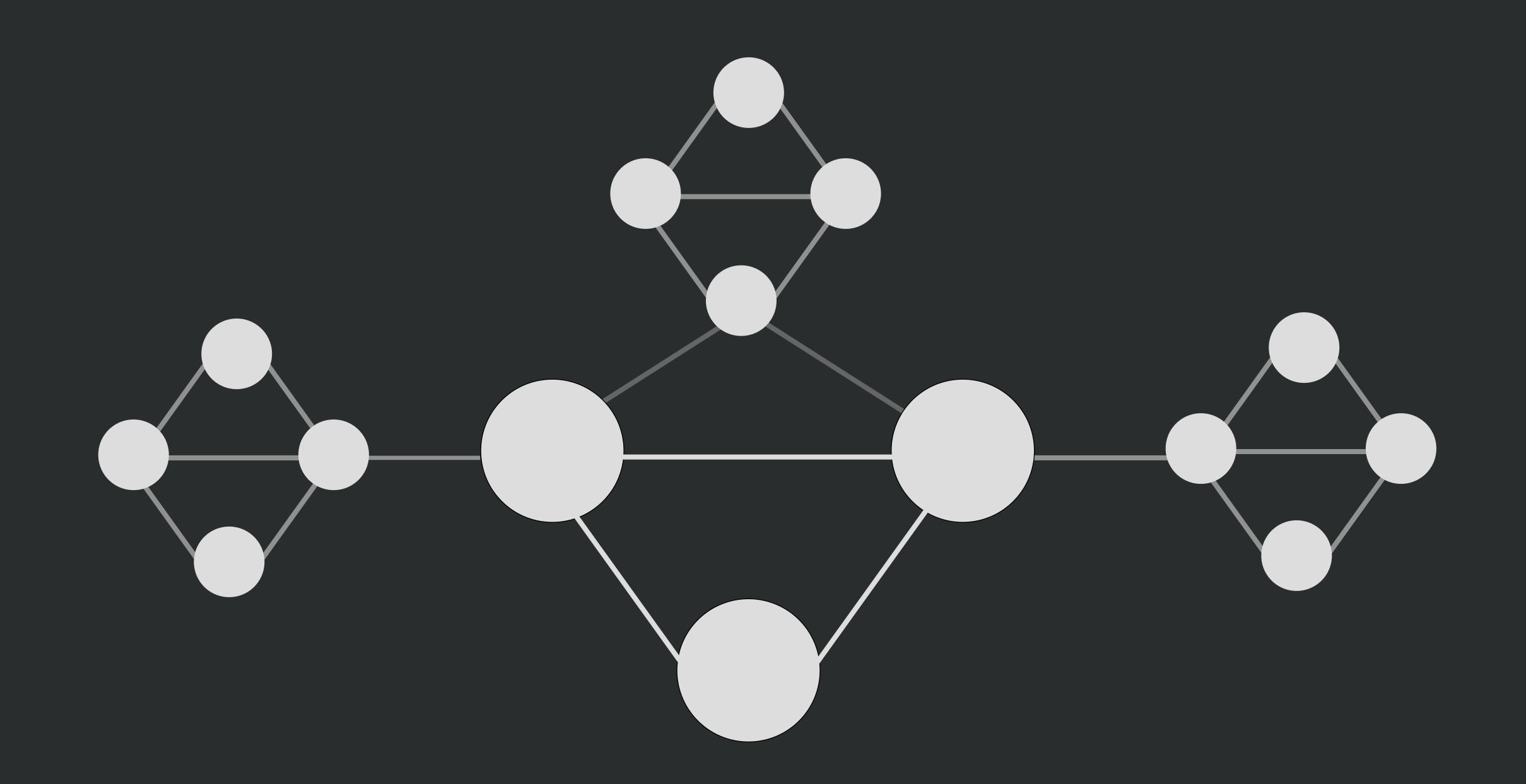
PHOTOS

PHOTOS

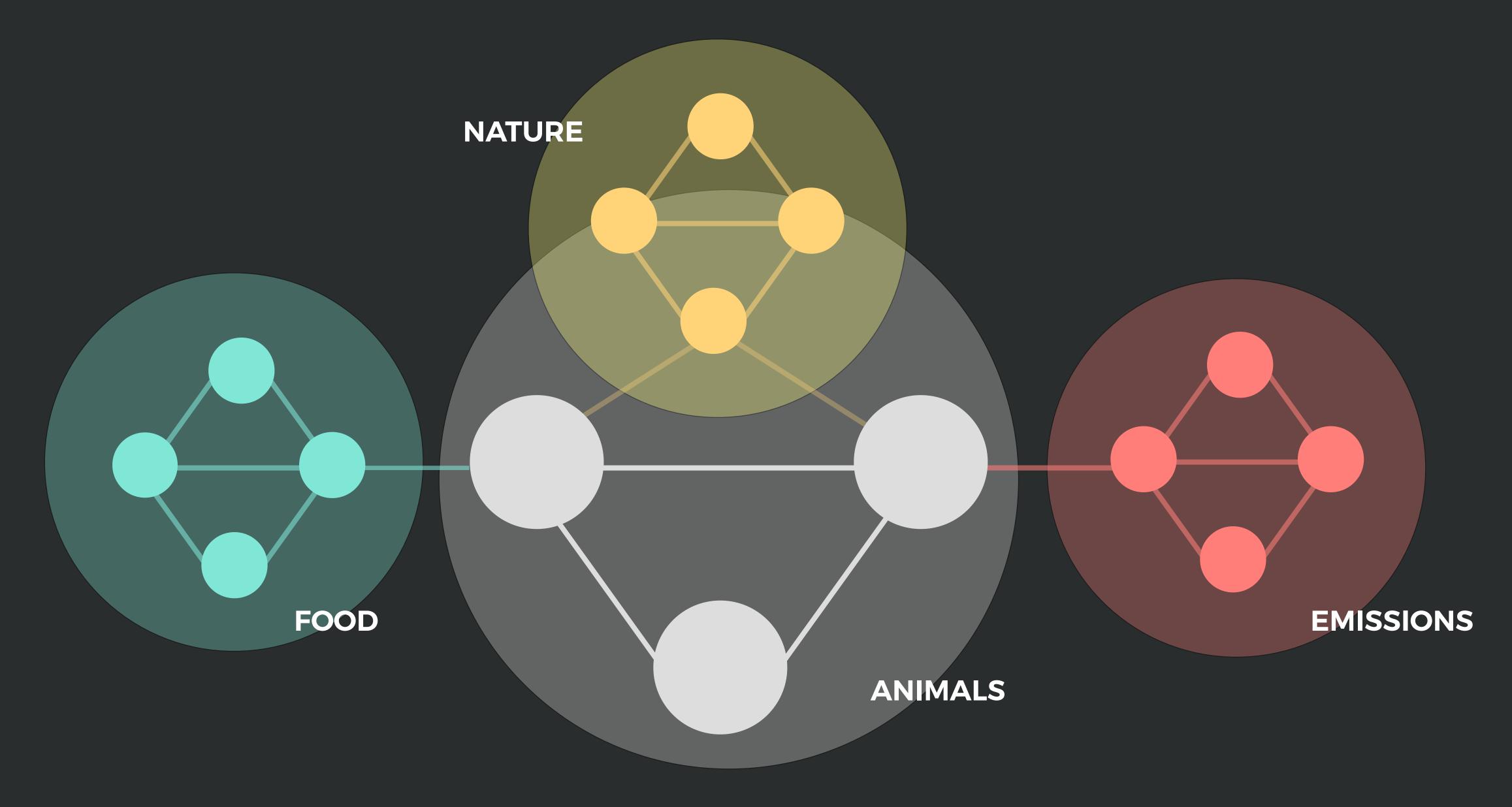
TWEETS

CO-OCCURENCE NETWORK

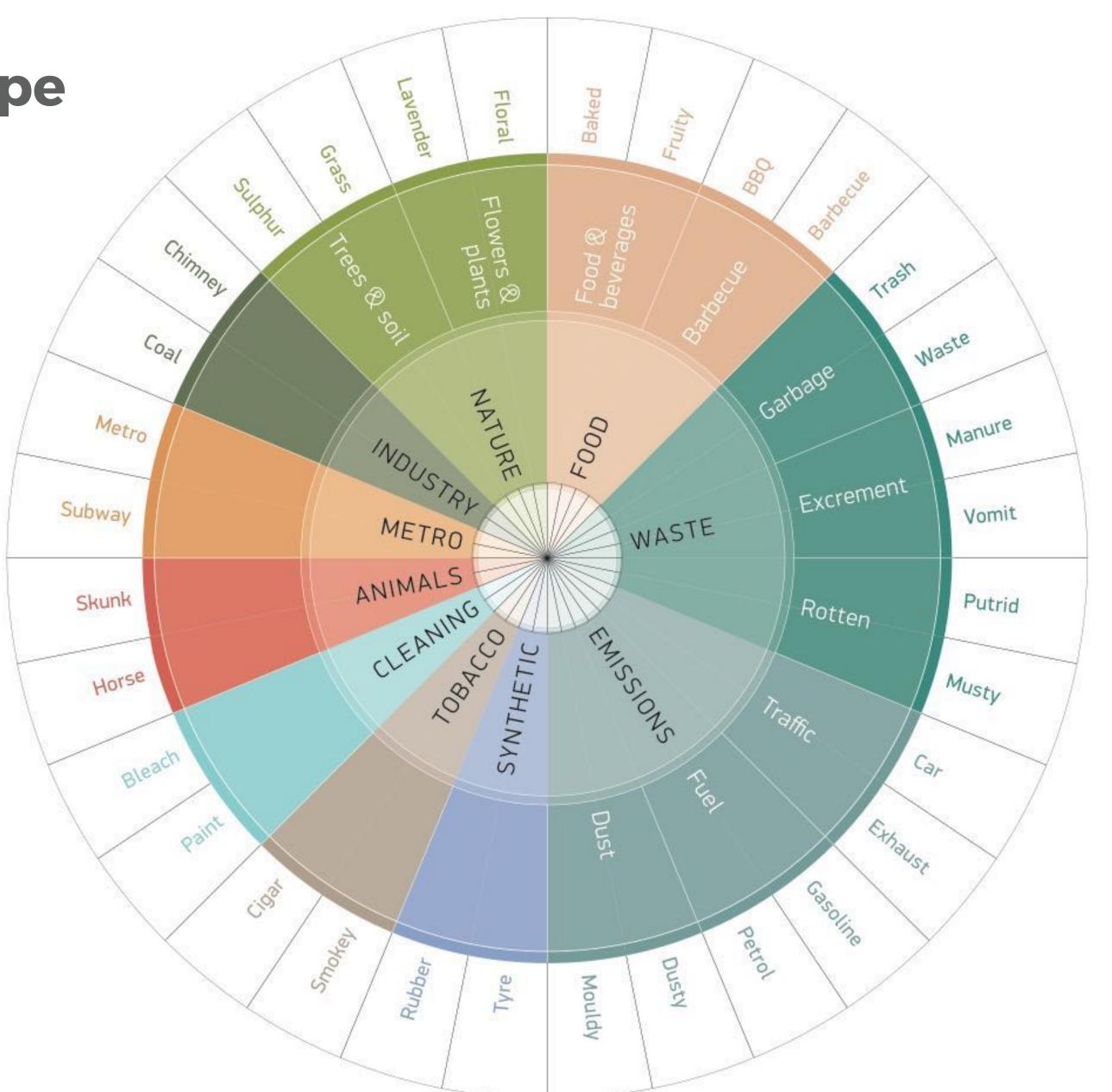


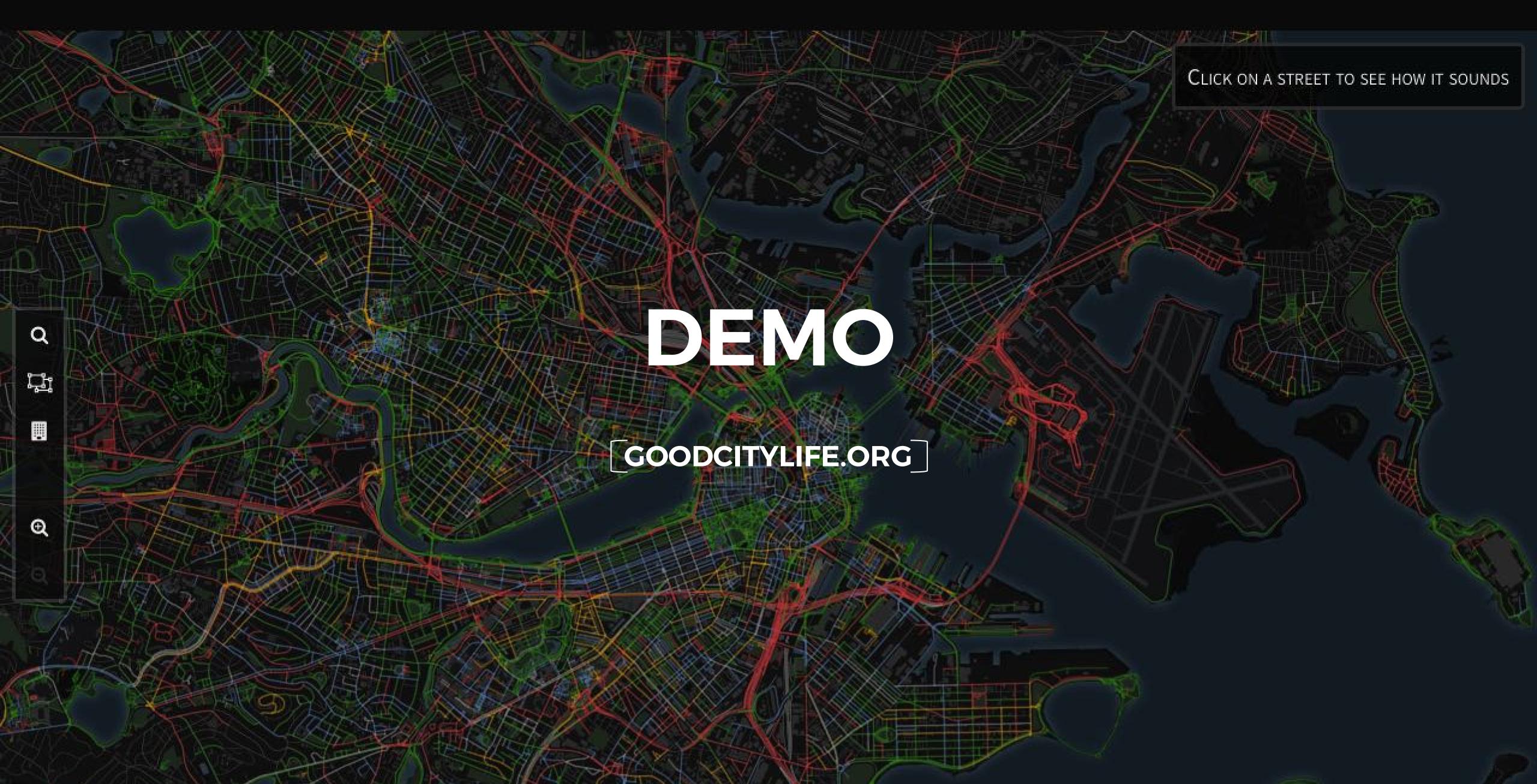


EMERGENCE OF CLUSTERS



Urban Smellscape Aroma Wheel SULPHUR Chimney Coal. Metro > Subway Skunk





How does the urban smellscape change through time and space?

CHATTY MAPS

HOW DOES A CITY SOUND?

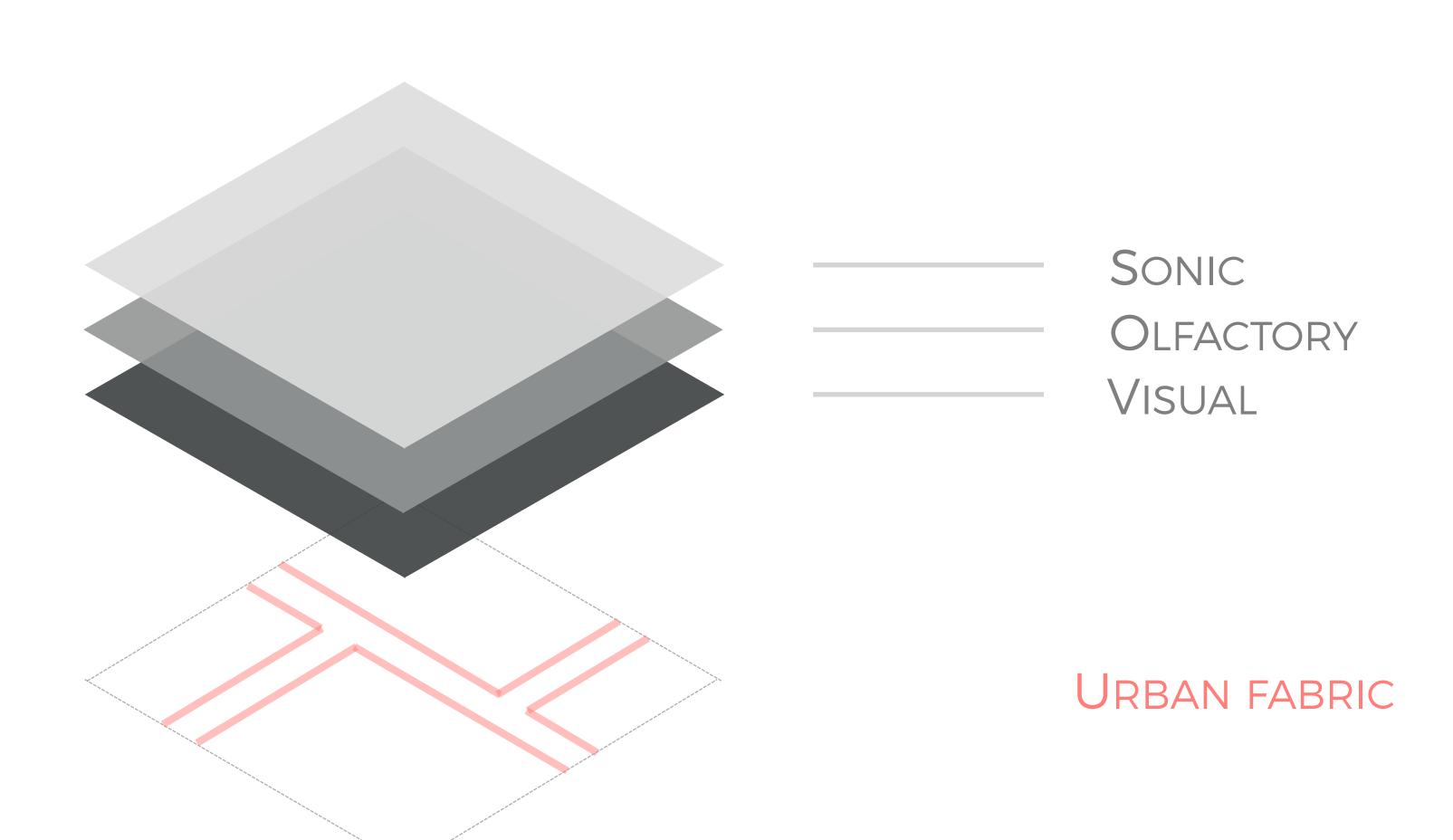
RSOS 2016

Urban Soundscape Waves Guitar Wheel TOW! LEGY CS. Footsteps . Running . Flush NATURE Chatter ' paper Voice // Office Speaking Computer HUMAN INDOOR Churchbell Church Baby TRANSPORT RAIL · Organ Kids Gr Pallhay Airplane Alarm Helicopter

VALIDATION

Air quality indicators

Presence of nature, food, etc. tags



Socio-economic Indicators

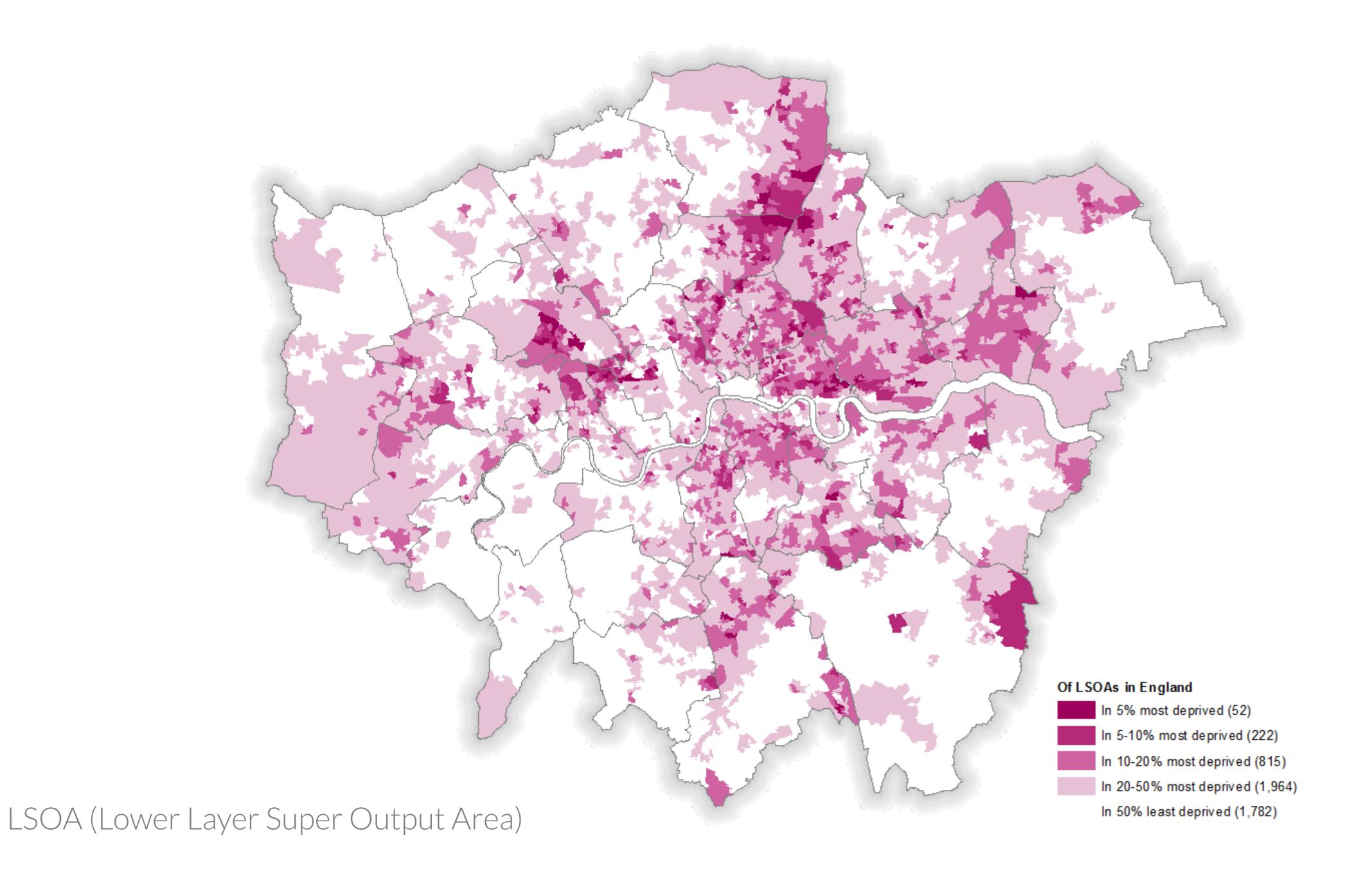
London

New York

London

IMD: Index of Multiple Deprivation

- Income deprivation
- Employment deprivation
- Health deprivation and disability
- Education, skills and training deprivation
- Barriers to housing and services
- Living environment deprivation
- Crime



IMD

nature animals

0.24***0.16***

emissions
waste
food
cleaning
industry
smoke

-0.16*** -0.26*** -0.1*** -0.19*** -0.2***

-O.15***

LIVING ENVIRONMENT

nature animals 0.29***0.17***

emissions

waste

food

cleaning

industry

smoke

synthetic

-0.23***

-0.35***

-0.4***

-0.35***

-0.24***

-0.3***

-O.15***

LIVING ENVIRONMENT

INCOME

animals nature

0.12

emissions waste cleaning

industry

-0.18*** -0.18***

-0.15***

LIVING ENVIRONMENT

animals nature

0.12***0.21***

INCOME

HEALTH

waste food cleaning industry smoke

-0.23***

-0.14***

-0.17***

-0.18***

-0.12***

LIVING ENVIRONMENT

animals

0.1***

INCOME

HEALTH

waste cleaning -0.19***

-0.14***

CRIME

LIVING ENVIRONMENT

animals

nature

0.17***

INCOME

emissions

-O.15***

HEALTH

waste

-0.19***

CRIME

industry

-0.16***

smoke

-0.12***

Housing

Sound (London)

IMD

human nature

O.11***

mechanical motorised music -0.14***

-0.17***

-0.17***

Sound (London)

LIVING ENVIRONMENT

nature

0.12***

mechanical -0.27***
motorized -0.22***
music -0.36***
indoor -0.31***

Crime 2008-2016 (London)

nature -0.38 animals -0.24

emissions 0.43 waste 0.35 metro 0.35 cleaning 0.32 industry 0.3

smoke 0.27

food 0.19

synthetic 0.19

Crime 2008-2016 (London)

nature -0.21

humans -0.16

motorised 0.36

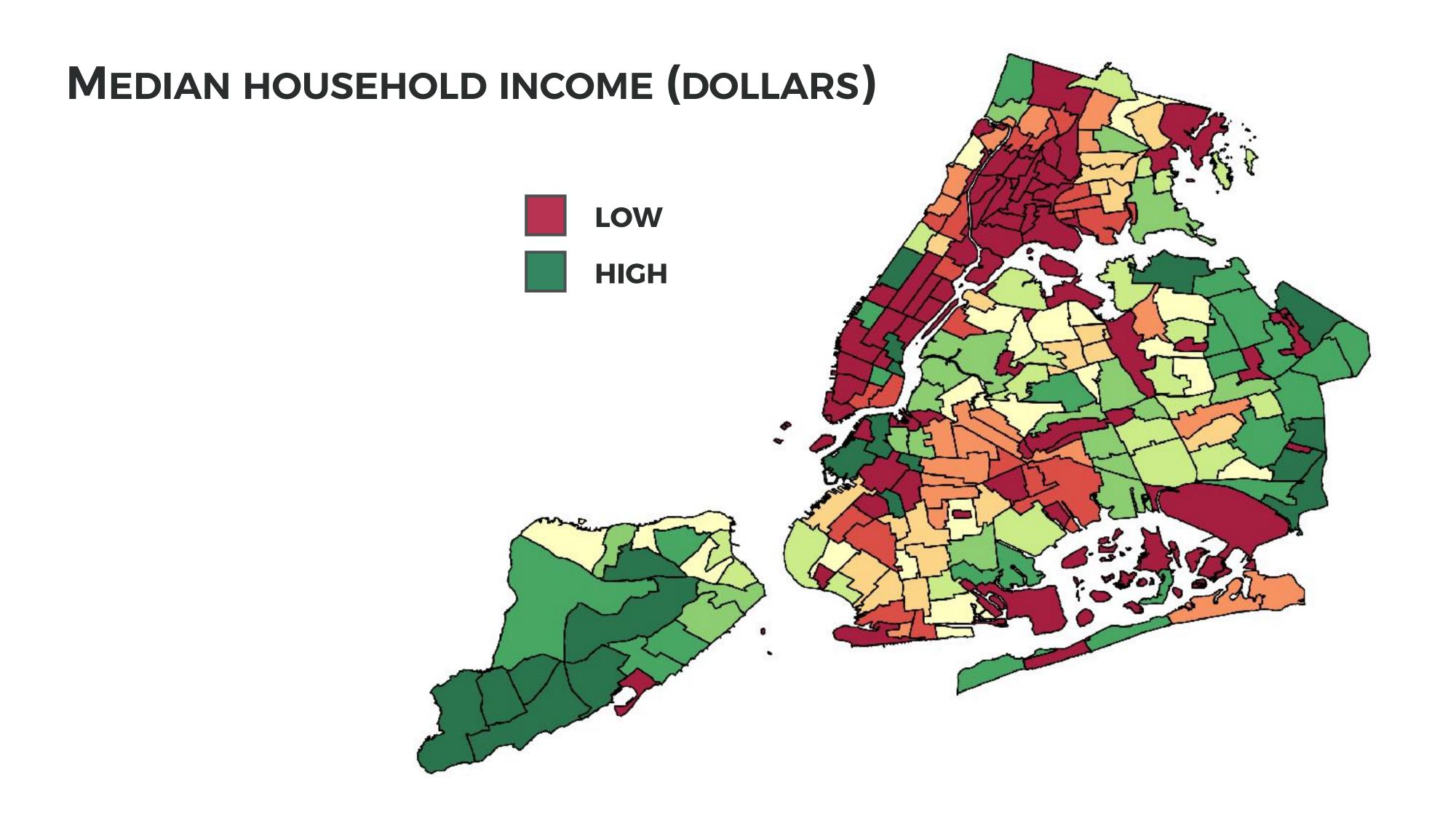
mechanical 0.17

music 0.3

New York (NTA level)

Census Bureau ACS Economic Profile

- Employment status
- Commuting to work
- Occupation
- Industry
- · Class of worker
- Health Insurance coverage
- Poverty level



Smell (NYC)

MEDIAN HOUSEHOLD INCOME

nature food

0.16***

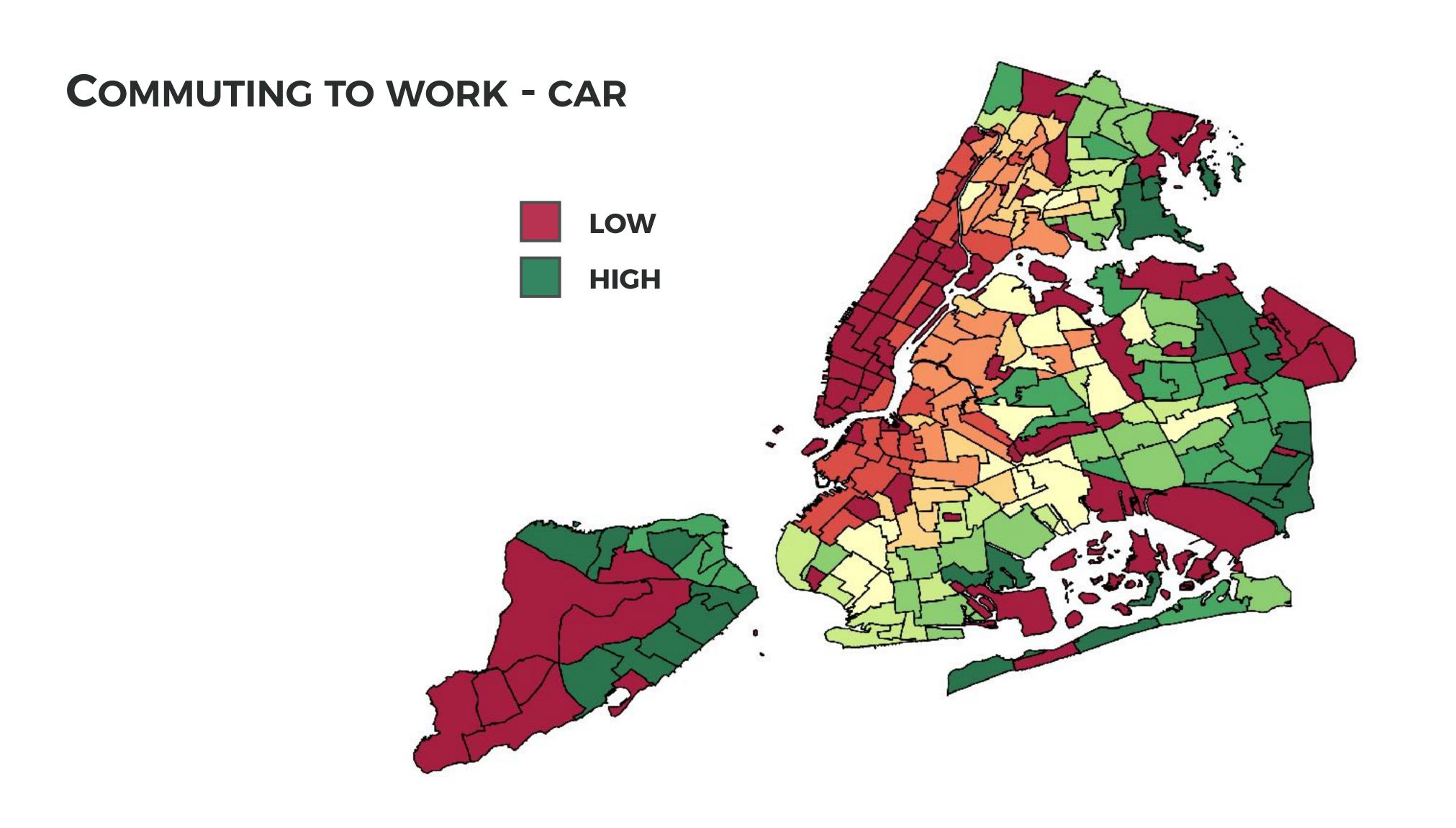
metro

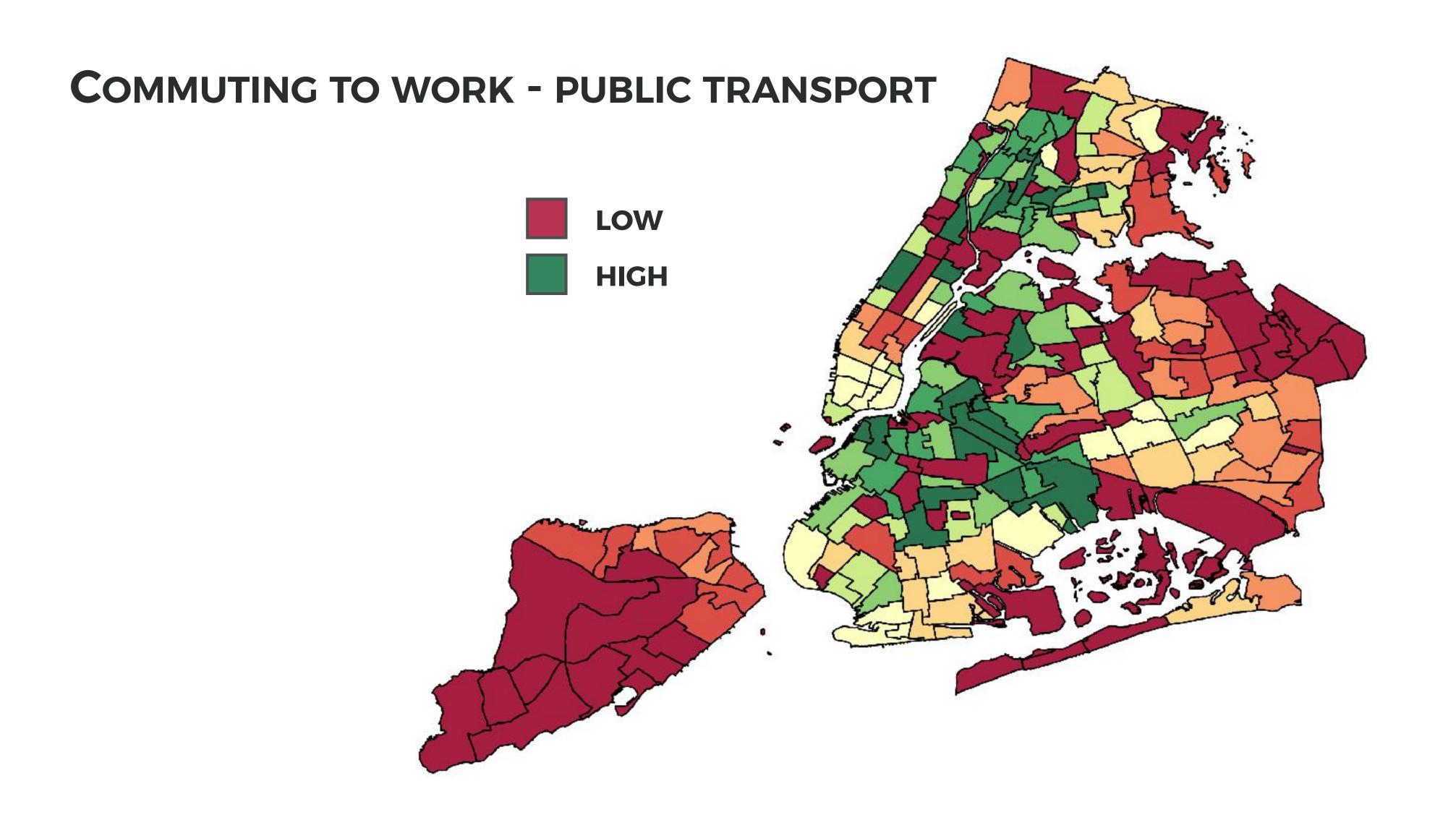
-0.43***

MEDIAN NON-FAMILY INCOME +tobacco

Income per household (NYC)

	emissions	nature	waste, industry, synthetic, smoke	metro
<10K	0.16	-0.39		0.45
10K-15K	0.15	-0.36		0.44
15K-25K		-0.38	0.15 (waste)	0.44
25K-35K		-0.29		0.31
35K-50K		-0.2	-0.25 (smoke)	0.26
50K-75K	-0.2	0.21	-0.27 (industry), -0.25 (smoke)	-0.15
75K-100K	-0.21	0.41		-0.52
100K-150K		0.41		-0.54
150K-200K		0.36	0.15 (smoke)	-0.45
>200K		0.3	0.25 (smoke)	-0.35





Commuting (NYC)

CAR

nature (0.3) waste (-0.15) cleaning (-0.25) emissions (-0.2) food (-0.2) metro (-0.49) synthetic (-0.24) smoke (-0.38)

PUBLIC TRANSPORTATION

nature (-0.32) waste (0.18) cleaning (0.24) industry (0.17) metro (0.54) smoke (0.22)

WALKED

nature (-0.25) food (0.15) industry (0.27) metro (0.41) synthetic (0.32) smoke (0.28)

WORKED AT HOME

cleaning (0.16) emissions (0.17) industry (0.2) metro (0.15) synthetic (0.32) smoke (0.36)

Sound (NYC)

MEDIAN HOUSEHOLD INCOME

nature

0.3***

motorized

-0.43***

MEDIAN NON-FAMILY INCOME

+music

0.17**

Income per household (NYC)

	human	nature	motorized
<10K	0.3	-0.29	0.24
10K-15K	0.29	-0.27	0.29
15K-25K	0.29	-0.3	0.34
25K-35K	0.27	-0.26	0.29
35K-50K	0.3	-0.19	0.29
50K-75K	0.28	-0.22	_
75K-100K	-0.33	0.36	-0.28
100K-150K	-0.18	0.37	-0.36
>200K	0.17	0.24	-0.37

Commuting (NYC)

CAR

nature (0.37) human (-0.45) mechanical (-0.17) music (-0.5)

PUBLIC TRANSPORTATION

nature (-0.36) human (0.28) mechanical (0.23) music (0.28)

WALKED

nature (-0.3) human (0.39) music (0.41)

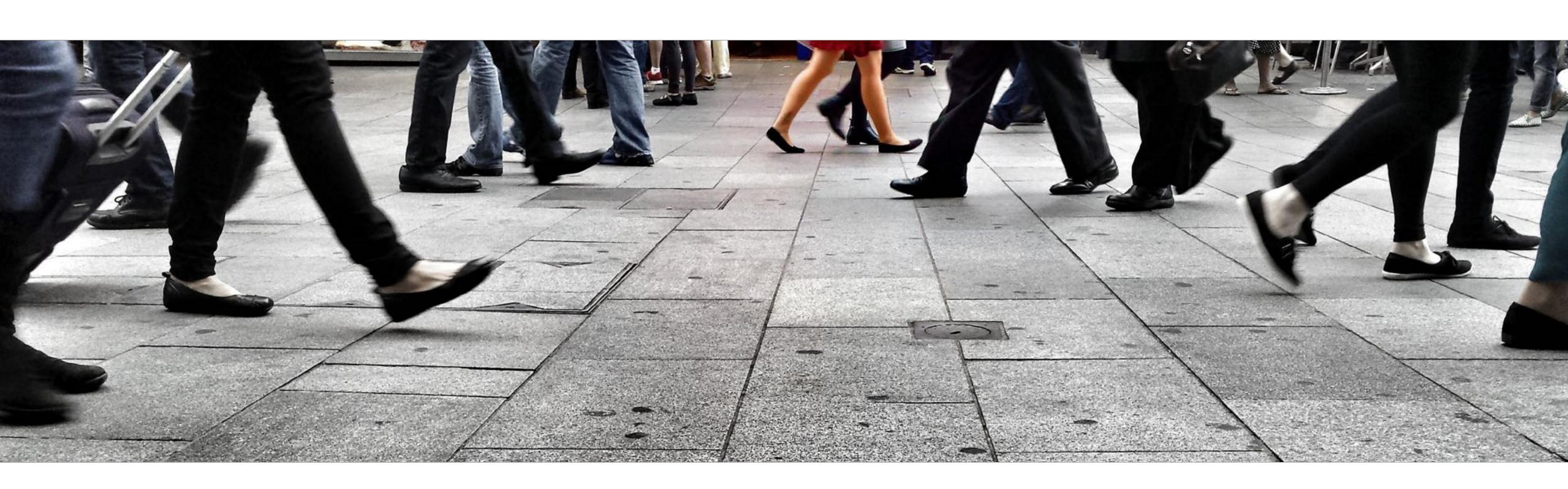
WORKED AT HOME

nature (-0.25) motorised (-0.17) human (0.28) indoor (0.29) music (0.35)

Walkability+Activities+Ambiance

WWW 2015

IS WALKABILITY QUANTIFIABLE?



Public space surrendered to cars

"The General Theory of Walkability explains how, to be favored, a walk has to satisfy four main conditions: it must be **useful**, **safe**, **comfortable**, and **interesting**. Each of these qualities is essential and none alone is sufficient."

Walkable City
Jeff Speck

Questions (safety)

- Can safe streets be identified by night activity?
 - Safe streets are photographed not only during the day but also at night, while unsafe ones mostly during the day
- Can safe streets be identified by activity segmented by gender or age?
 - Safe streets are predominantly visited by a **male** population (r = 0.58)
 - Safe streets are predominantly visited by an adult population (r = 0.32)

Questions (walkability)

- Can walkable streets be identified by the presence of specific types of places?
- · Can walkability be predicted?
 - yes!

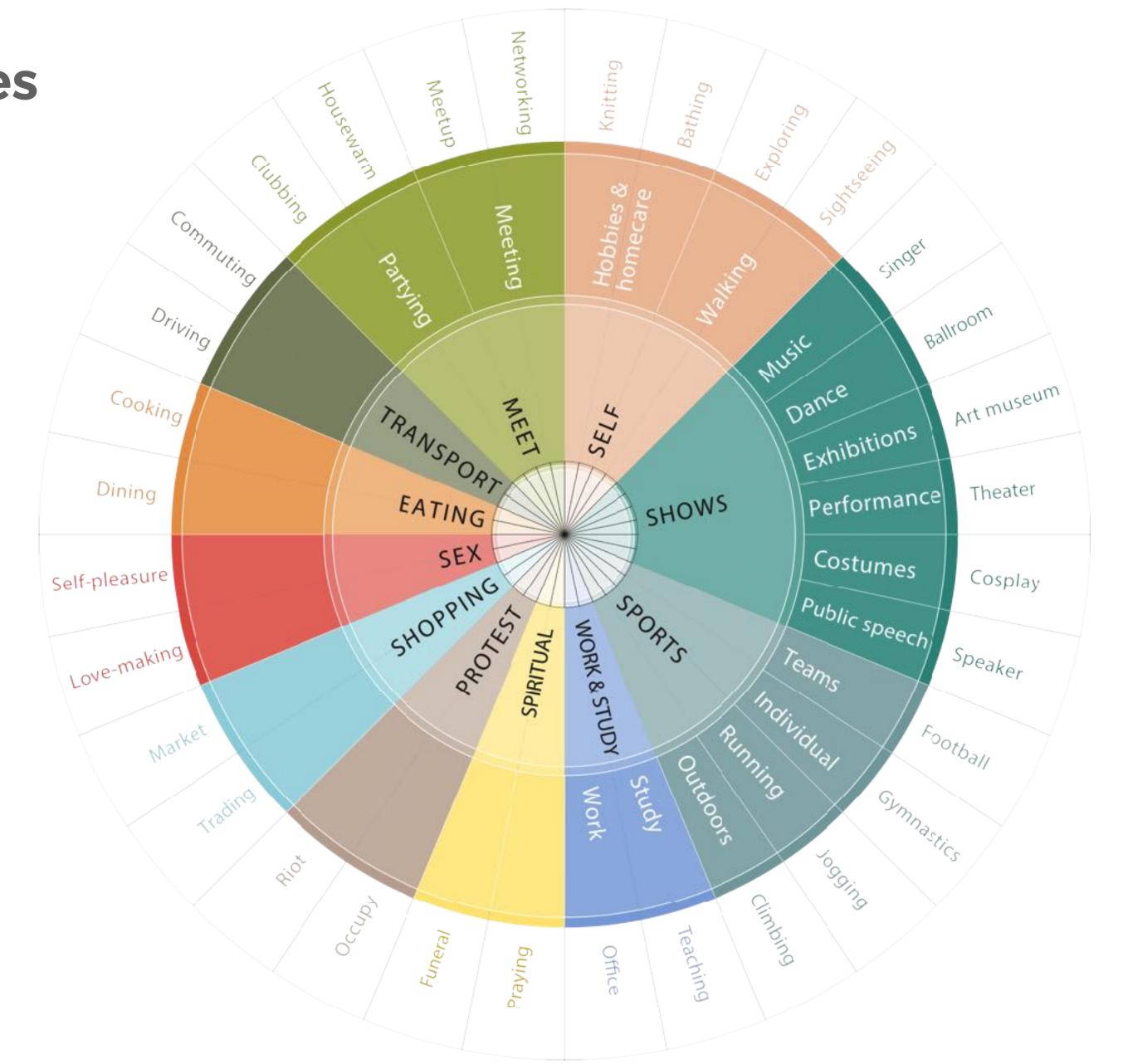
Activities

Profiling urban activities

- Identifying activity words
 - From Flickr
 - From web documents
 - Expansion of activity words
- Focus on private activities
 - indoor vision tag
- Clustering of activity words in a hierarchical taxonomy

Urban Activities

Wheel



Results (some)

```
+work&study
```

+protest

+self

+show

```
+education(NYC) +housing (L)
```

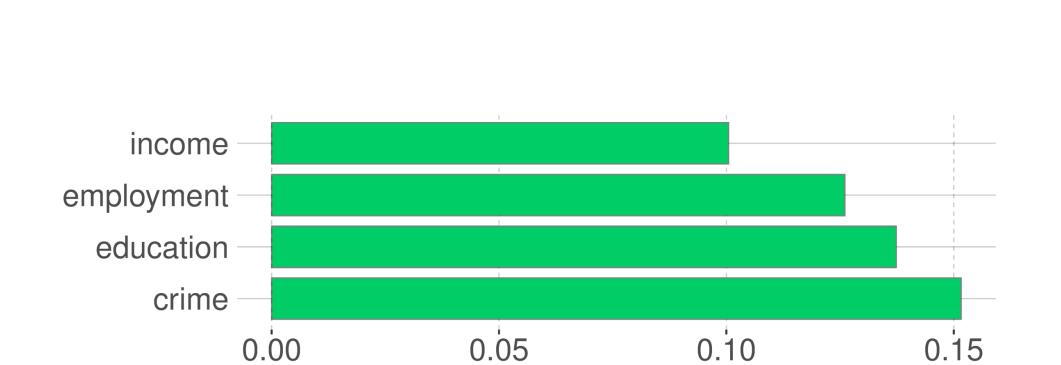
-education (L), -income (L/NYC)

-income

-crime (L), -education, -employment,

-income (NYC)

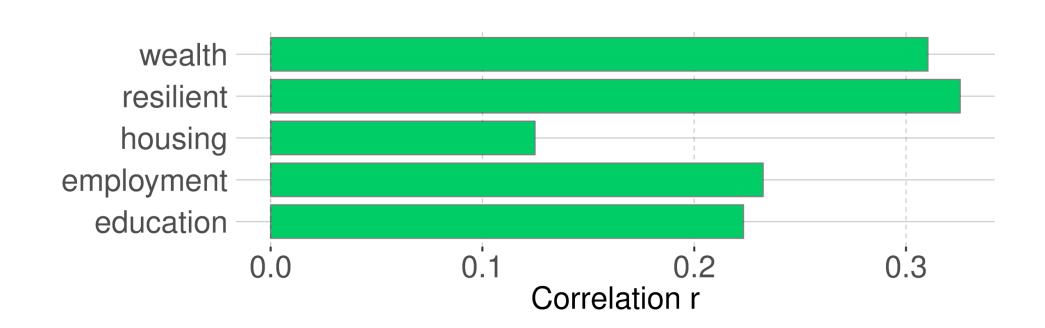
Diversity



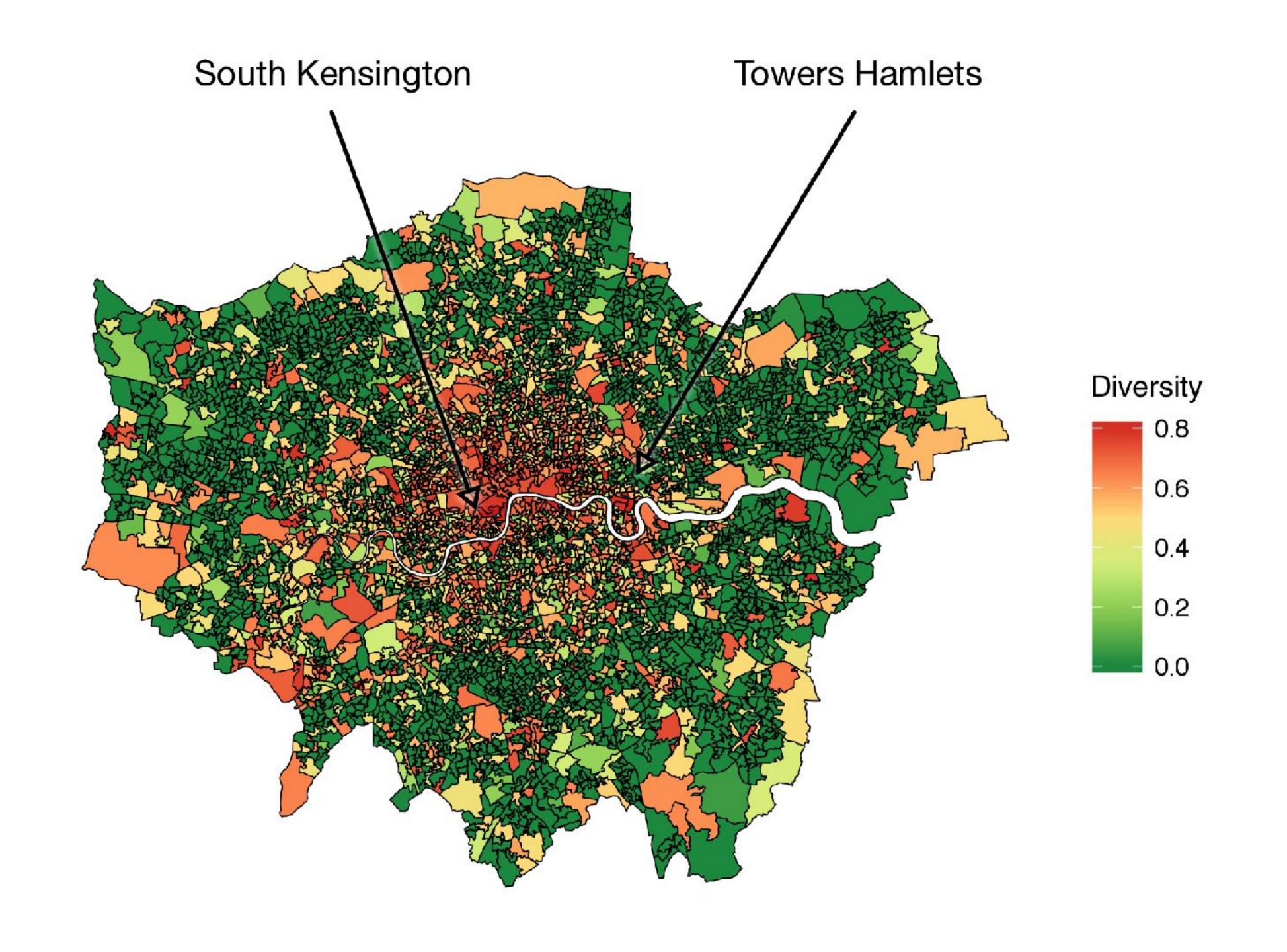
Correlation r

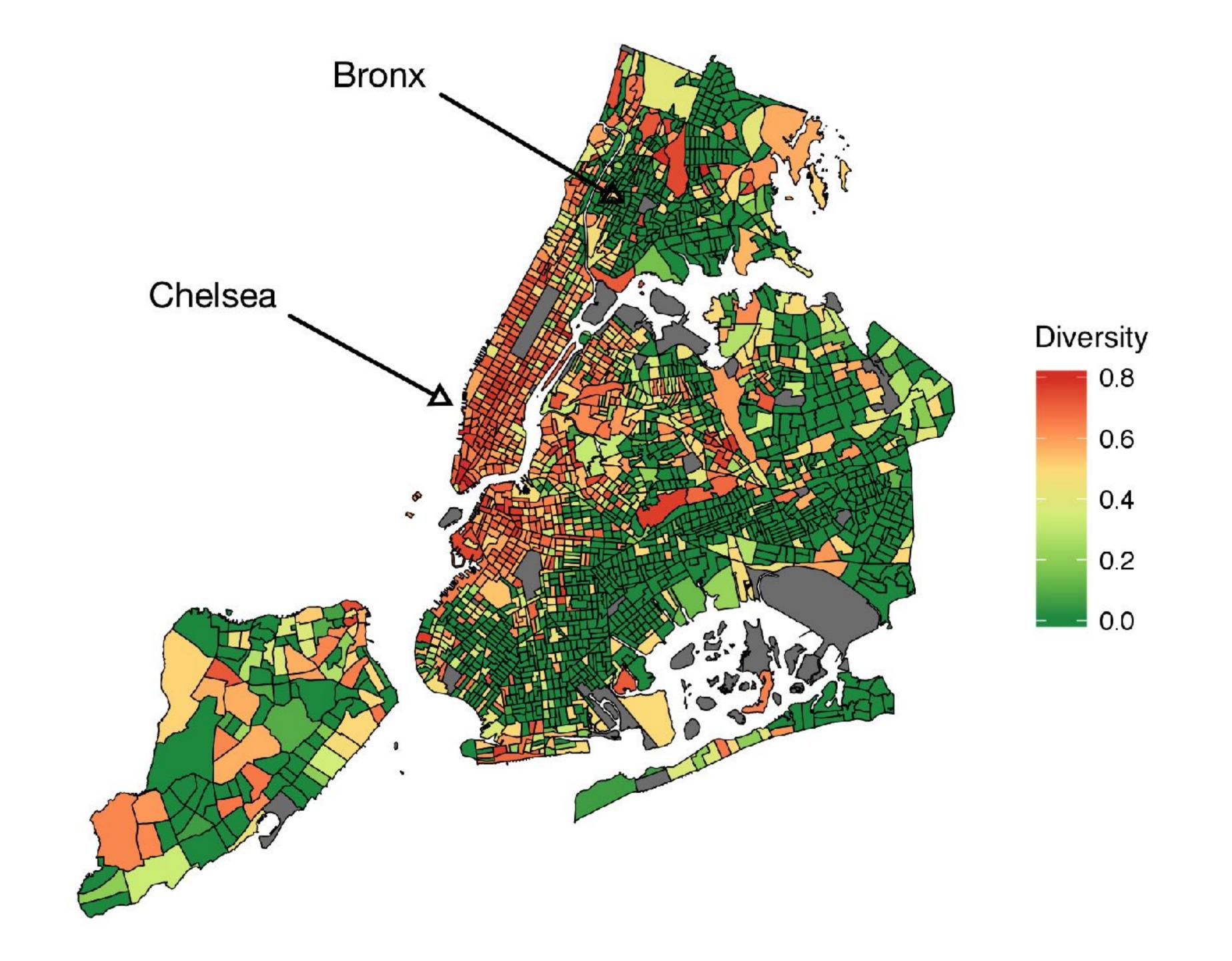
London

New York



economic development is associated with activity diversity





Limitations

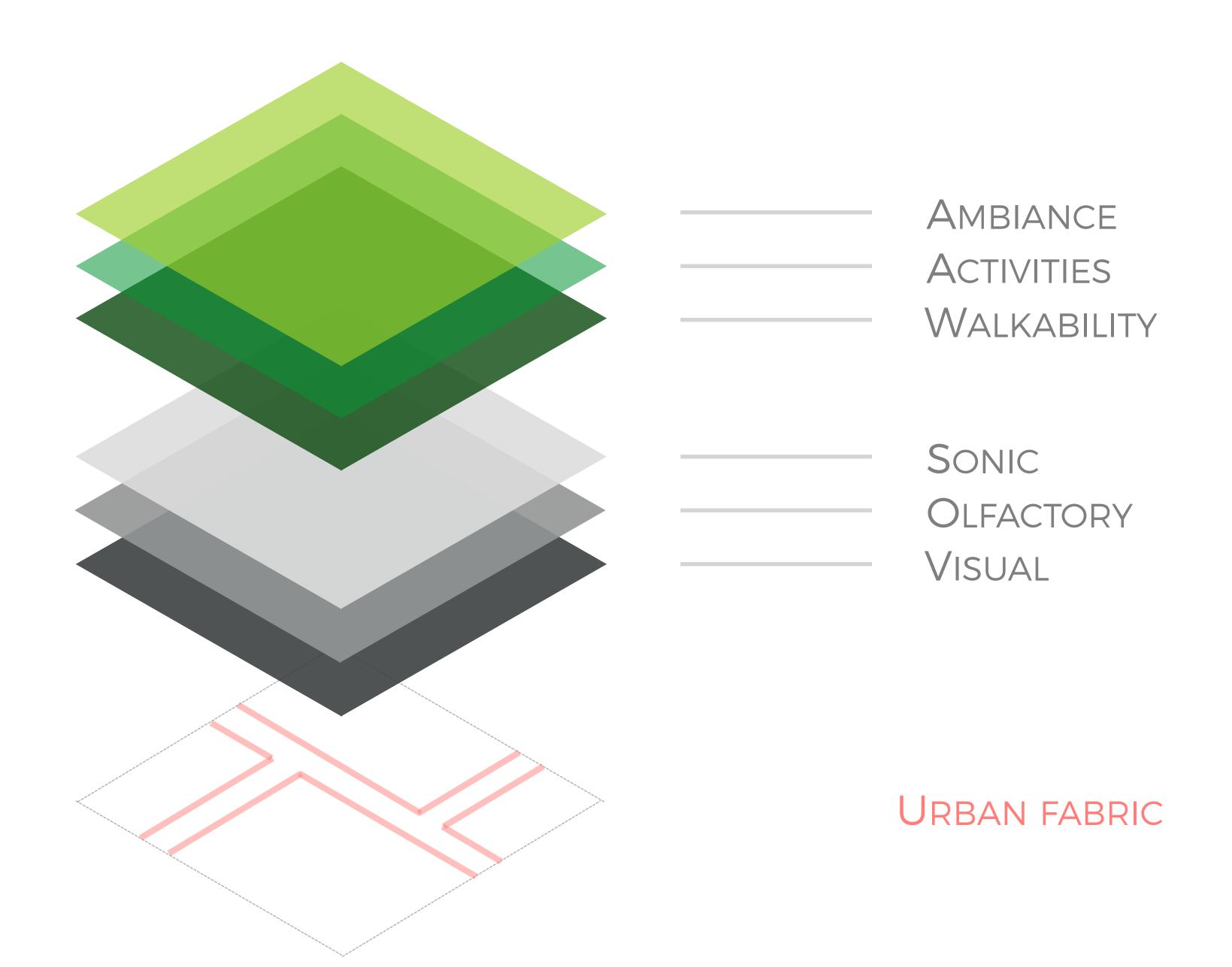
- Not exhaustive list of activities
- · Population-demographic bias
- Self-selection bias
 - well-to-do areas might be over-represented
- · Results do not speak to causality

AMBIENCE

Can the ambience of a place be predicted from pictures?

Artistic Creative street art **Urban Ambiance** Moisy Car 196t BUSY Crowded LgbtgSOCIAL GAY Concrete Tradition INDUSTRIAL CLASSIC Construction Antiques POSH TURISTY Suburban Formal Ethnic Pricey Wed/the Indy Cultural Attractions Touristic

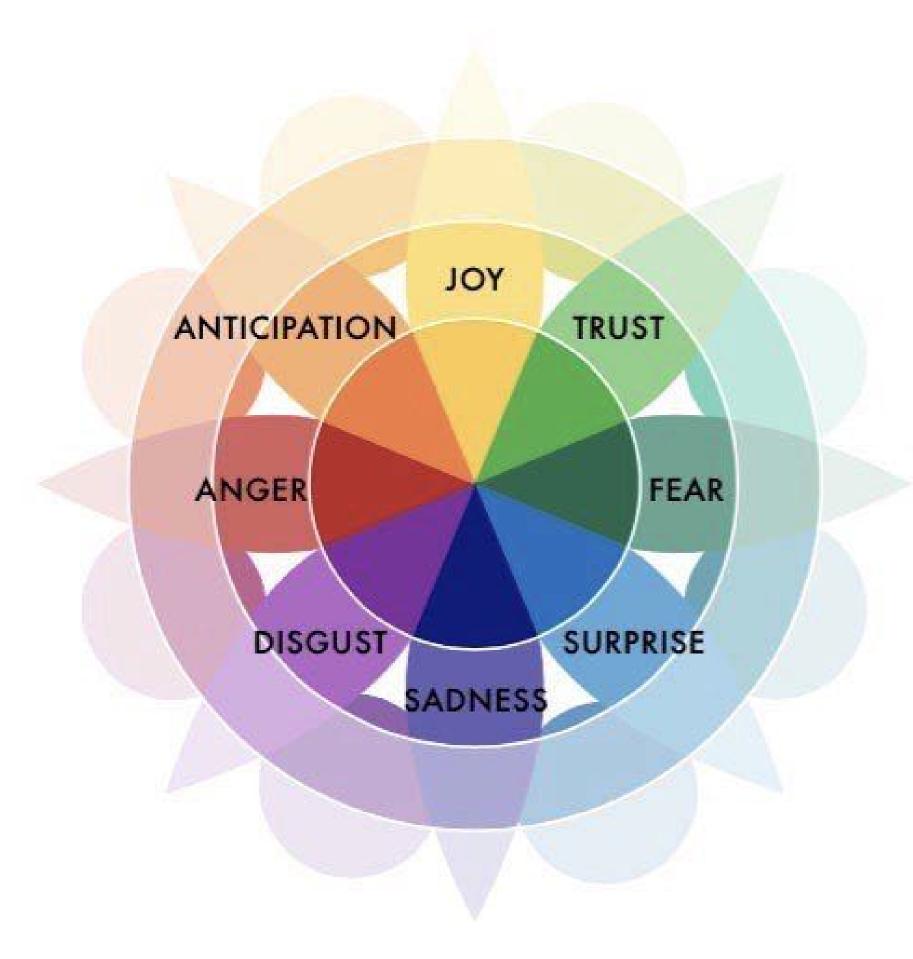
Wheel



Emotions

EMOTIONS

To model sentiment we adopt the EmoLex lexicon that follows the 8 primary emotions from Plutchik's psychoevolutionary theory.



CORRELATION BETWEEN
EMOTIONS AND SMELLS

CORRELATION BETWEEN EMOTIONS AND SOUNDS

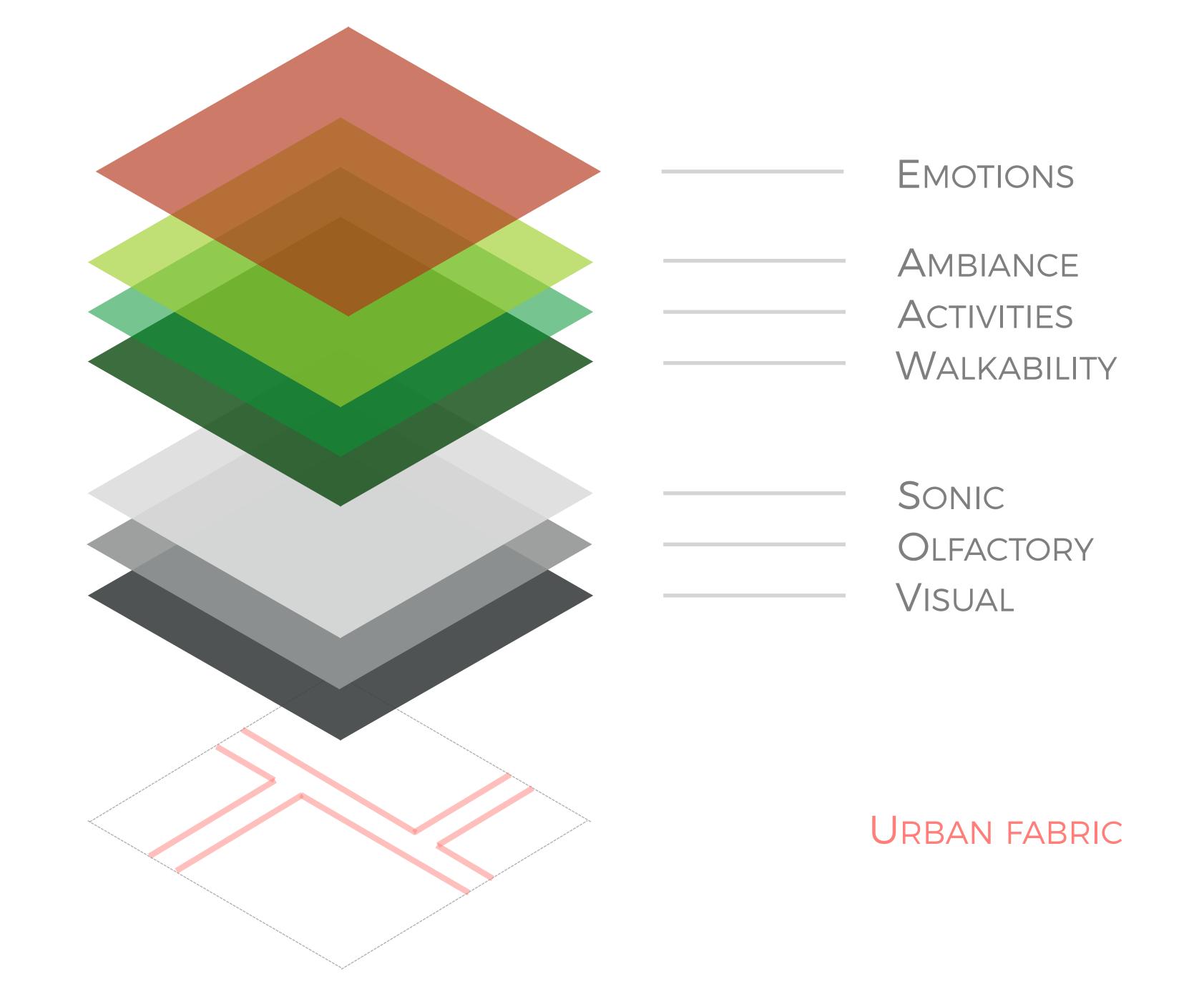
Example (London)

sadness -income, -employment, -health, -crime, -housing,

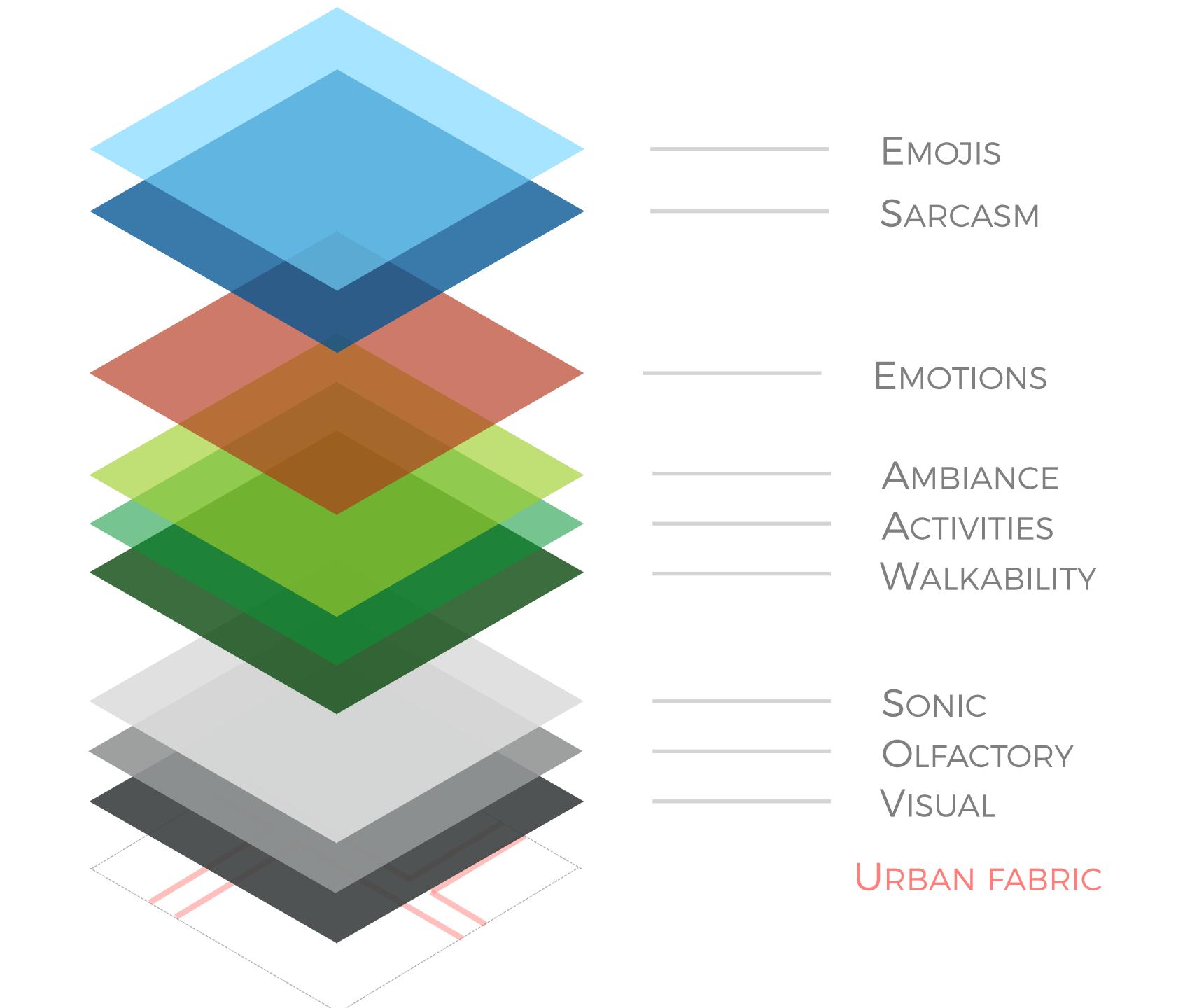
-living environment

negative -income, -health, -education, -employment

joy +education, +housing



Ongoing work



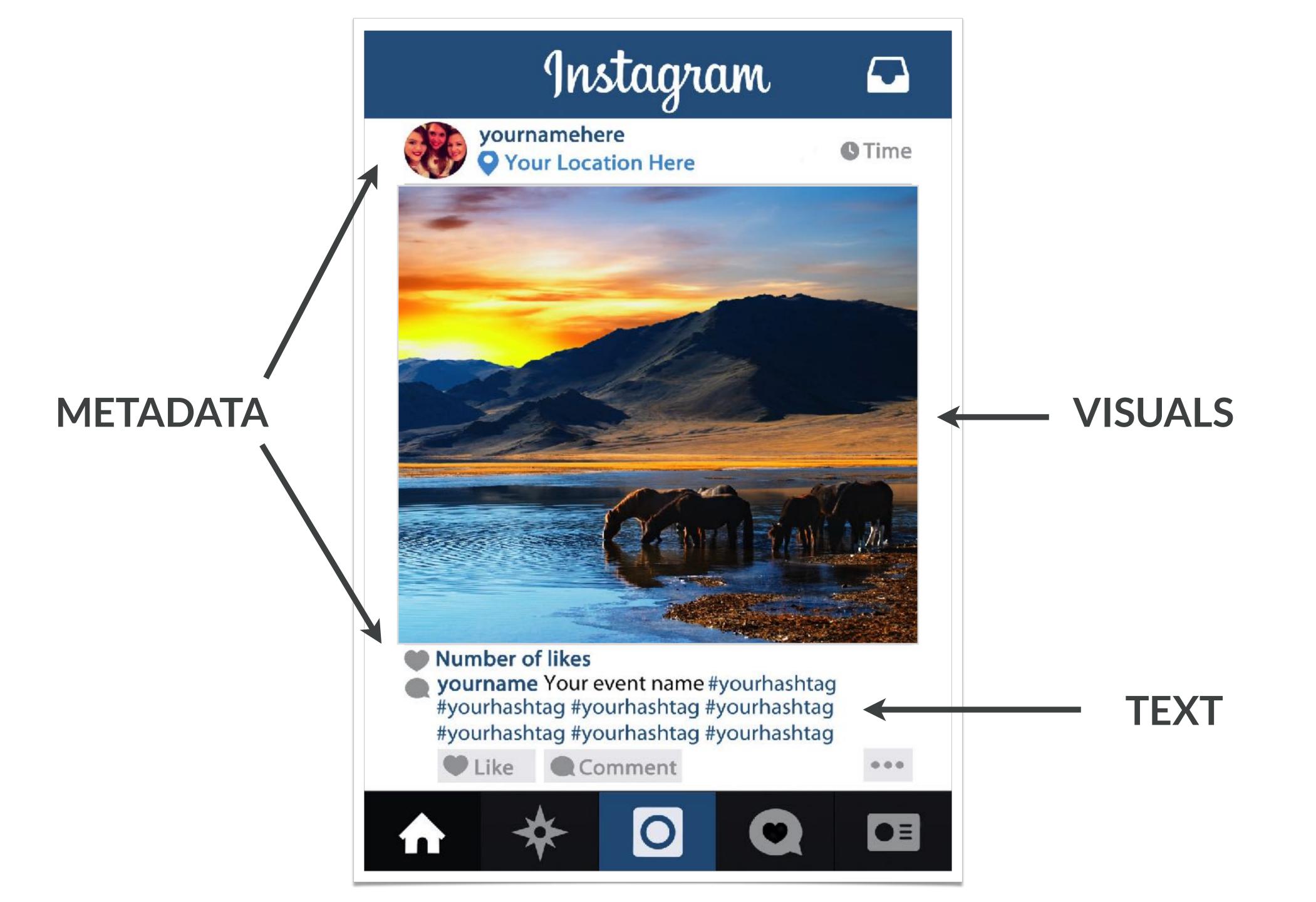
SARCASM

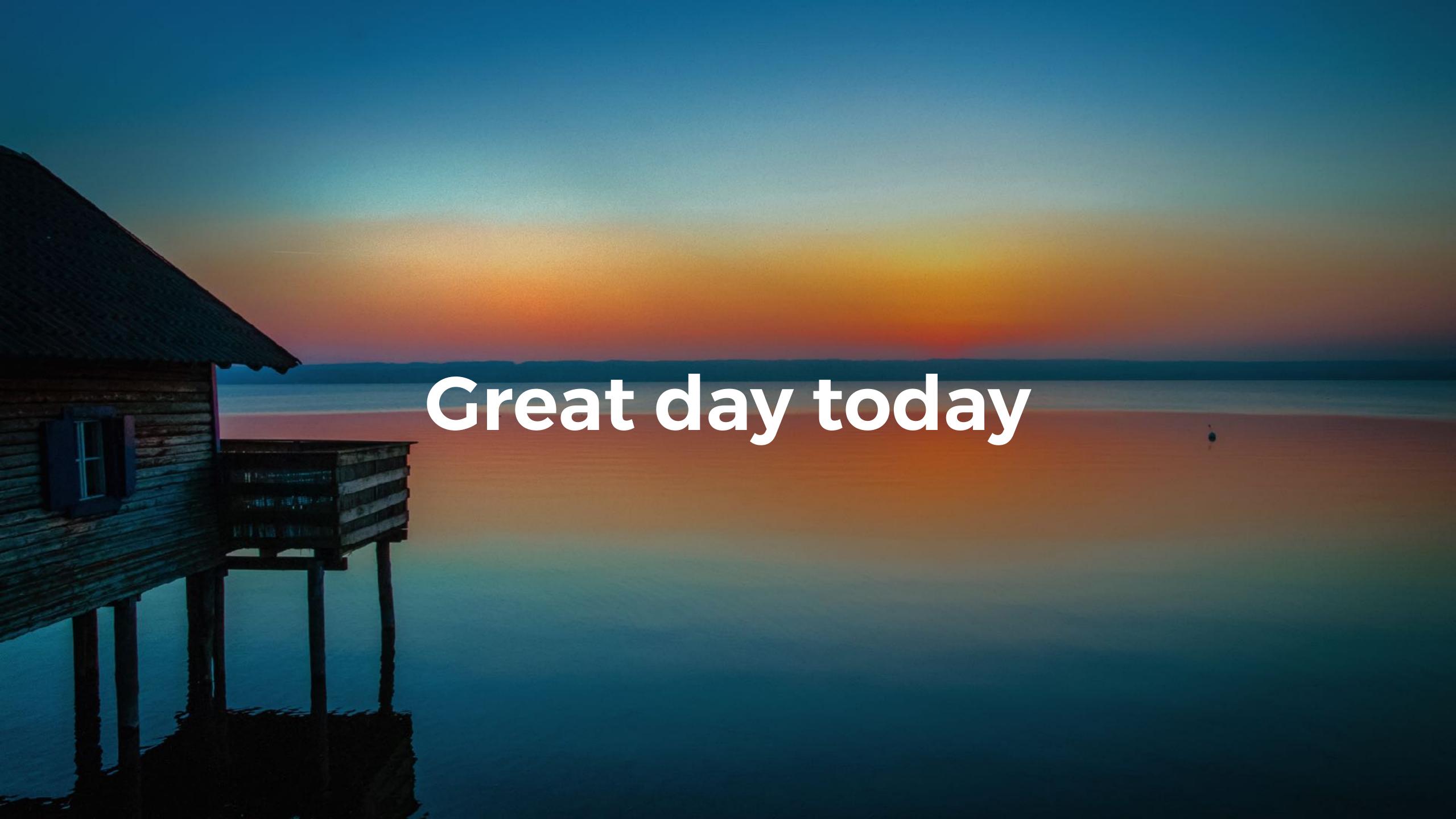
LITERAL # INTENDED

Some previous work

- Lexical and linguistic markers
- Context
 - hashtags, emojis
 - previous posts
 - author profile, propensity to sarcastic utterances

SOCIAL MEDIA IS MULTIMODAL





Text+Image

Image as a **contextual** clue

POSTS CONTAINING #SARCASM OR #SARCASTIC

DATA

t

517K

63K

20K

99% TEXT+IMAGE 40% TEXT+IMAGE 7.56% TEXT+IMAGE

CHARACTERISE THE ROLE OF IMAGES

Study of the interplay between textual and visual components

CHARACTERISE THE ROLE OF IMAGES

Study of the interplay between textual and visual components

COLLECT A GROUND TRUTH FOR SARCASM

- A. Evaluate the impact of visuals as a source for context
- B. Identify sarcastic posts with a high level of agreement

2

ASK THE CROWD!

1K POSTS

5 JUDGEMENTS

\bigcirc

FIRST EXPERIMENT

Show only the textual component of a post

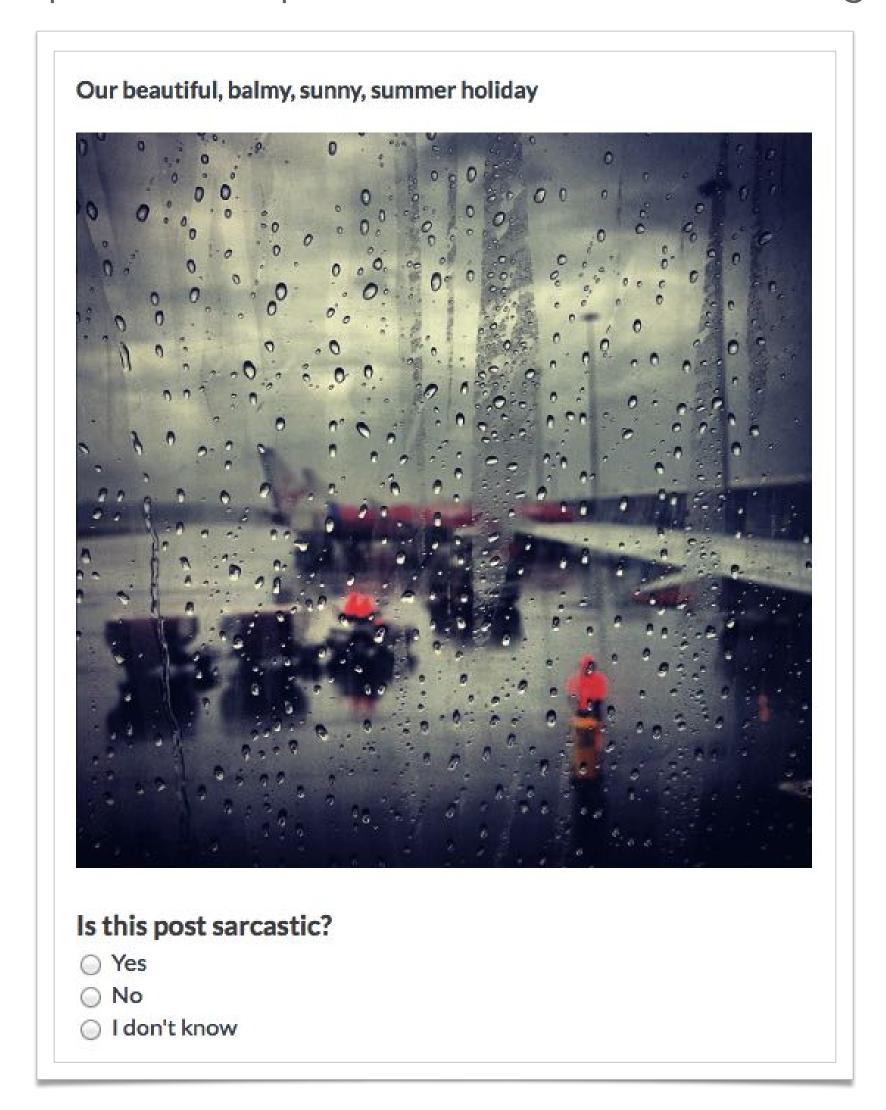
Our beautiful, balmy, sunny, summer holiday

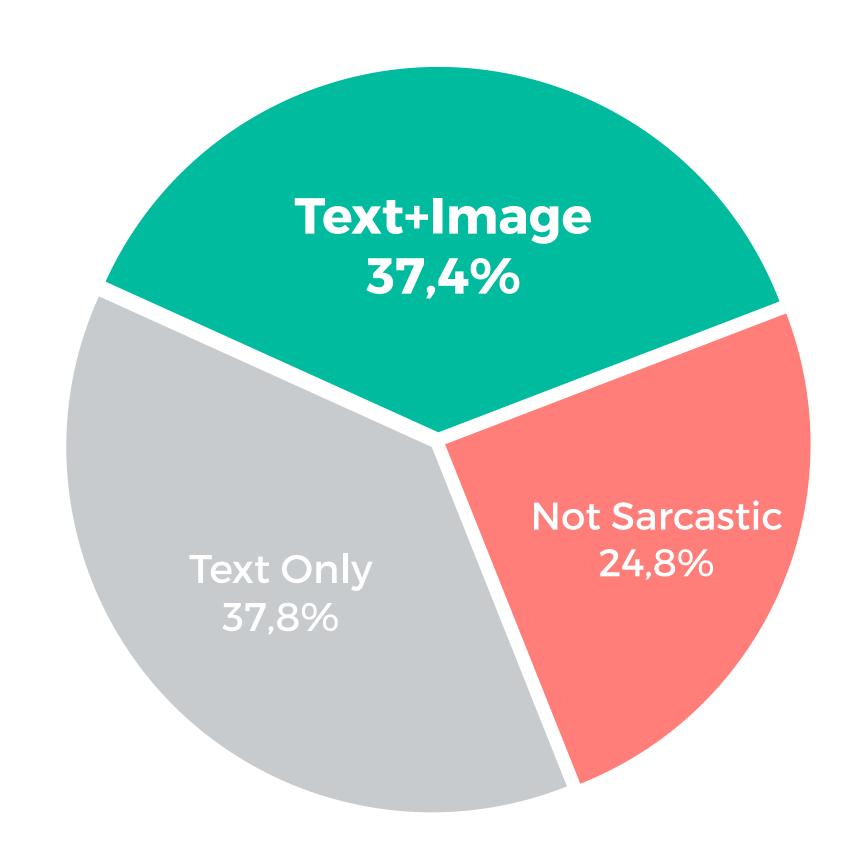
Is this text sarcastic?

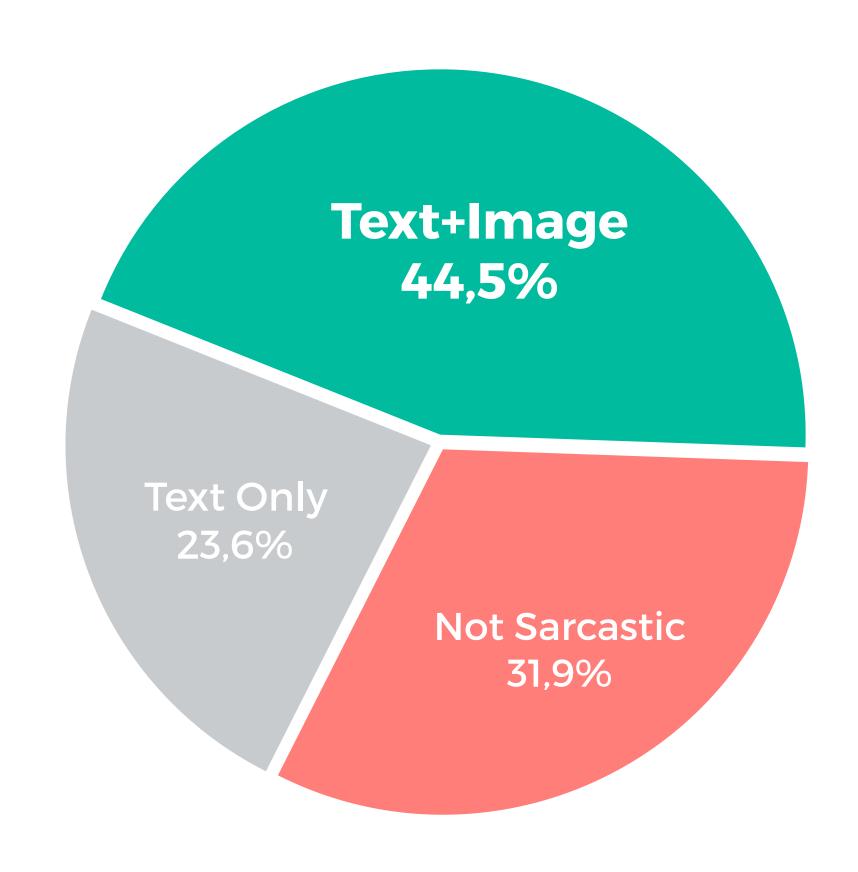
Yes
No
I don't know

SECOND EXPERIMENT

For all the posts that are judged **not** sarcastic in the previous step, show the text **and** the image







CHARACTERISE THE ROLE OF IMAGES

Study of the interplay between textual and visual components

COLLECT A GROUND TRUTH FOR SARCASM

- A. Evaluate the impact of visuals as a source for context
- B. Identify sarcastic posts with a high level of agreement

2

DETECT SARCASM

SVM Fusion+Deep learning fusion approaches

How can we detect sarcasm in multimodal posts?

Different fusion approaches

- SVM based
- Deep learning

Open questions:

- Does the use of figurative language change according to sociodemographic variables?
- Does the use of figurative language change in different areas of the city?

Questions?

• • • • • • • • • • •

schifane@di.unito.it

http://www.di.unito.it/~schifane

