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Few words about me
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DISTRIBUTED SYSTEMS 
RECOMMENDER SYSTEMS

TURIN

@UNITO
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NETWORK SCIENCE 
HUMAN COMPUTING

CROWDSOURCING 

BLOOMINGTON

@IU
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LONDON

BARCELONA

URBAN COMPUTING 
MACHINE LEARNING

BEHAVIOURAL STUDIES 
COMPUTATIONAL *

NEW YORK

@Yahoo
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CAMBRIDGE

URBAN COMPUTING 
COMPUTATIONAL SOCIAL SCIENCE

@Nokia Bell Labs
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WORLD URBANIZATION PROSPECTS: THE 2014 REVISION @UNITED NATIONS 

HUMANITY IS URBAN

30% 54% 66%
1950 2014 2050



Eureka Presentation

INFORMATICS ARE PERVASIVE
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SHAKESPEARE, CORIOLANUS

“ WHAT IS A CITY BUT PEOPLE? ”
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EFFICIENT.SUSTAINABLE.SMART

SOCIAL.HEALTHY.HAPPY
+
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HOW DIGITAL DATA CAN BE USED TO

1. STUDY URBAN PHENOMENA AT SCALE

2. PROFILING
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coordinates

WHERE

WHEN
timestamp

WHAT
text+visual+audio

WHO
author

WHY
intent, context

(lon, lat, t)

TREEPEOPLE

GRASS

STREET

TRASH BIN
STREET LIGHT

Wonderful day at the park #nature
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Sensing
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SMELLY MAPS
How does a city smell?

CHATTY MAPS
How does a city sound?

HAPPY MAPS
How visually pleasant is a city?

1

2

3



HAPPY MAPS

GET THE SHORT AND 
PLEASANT ROUTE

H y p e r Tex t  2 0 1 4



A

B

SHORTEST

SHORT and  
PLEASANT
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HOW?

COLLECT URBAN PERCEPTIONS
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HTTP://URBANGEMS.ORG/
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HOW?

COLLECT URBAN PERCEPTIONS

GENERATE EMOTIONALLY-AWARE  
ROUTES
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HOW?

COLLECT URBAN PERCEPTIONS

GENERATE EMOTIONALLY-AWARE  
ROUTES

EVALUATE

-Path from Euston Square and 
Tate Modern 

-3 situations (happy, quiet, 
beauty scenarios) 

-4 paths to vote on a Likert 
scale (paths are unlabeled) 

SURVEY IN LONDON
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HOW?

COLLECT URBAN PERCEPTIONS

GENERATE EMOTIONALLY-AWARE  
ROUTES

EVALUATE

MODEL AESTHETICS WITH  
SOCIAL MEDIA DATA

-For each street segment we extract: 
-Number of pictures (density), number 
of views, of favorites, of comments, 
and tags 

-Tags (LIWC dictionary, 72 categories) 
-Extract features that are significantly 
correlated with beauty scores 
-Example: density, ’posemo’, ‘negemo’, 
‘swear’, ‘anx’ (anxiety), ‘sad’, and ‘anger’ 
LIWC categories 

-Build a model to predict beauty

METHOD

7M geolocated photos in London

DATA
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HOW DOES A CITY 
SMELL?

SMELLY MAPS

ICWSM 2015
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Humans discriminates millions of odors
Science 2014
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Yet, city planning 
can discriminate 
only a few bad odors 

Why this negative perspective? 
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Smell Walks
Amsterdam, Pamplona, Glasgow, 
Edinburgh, Newport, Paris, New York, 
Singapore
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PHOTOS

436K
TWEETS

1.7M
PHOTOS

17M

DATA

London +  Barcelona



DOG CAT
30

BIRD

10 5

CO-OCCURENCE NETWORK





ANIMALS

EMISSIONSFOOD

NATURE

EMERGENCE OF CLUSTERS
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Urban Smellscape  
Aroma Wheel
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DEMO
GOODCITYLIFE.ORG
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HOW DOES THE URBAN SMELLSCAPE CHANGE THROUGH TIME AND SPACE?
ICWSM 2016



CHATTY MAPS

HOW DOES A CITY 
SOUND?

RSOS 2016



Eureka Presentation

Urban Soundscape  
Wheel
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VALIDATION

Presence of nature, food, etc. tags

OPEN STREET MAPS

Air quality indicators

CITY OFFICIALS



SONIC

OLFACTORY

VISUAL

URBAN FABRIC 
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Socio-economic Indicators

London New York



IMD: Index of Multiple Deprivation

• Income deprivation 

• Employment deprivation 

• Health deprivation and disability  

• Education, skills and training deprivation  

• Barriers to housing and services  

• Living environment deprivation 

• Crime 

London
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LSOA (Lower Layer Super Output Area)



Smell (London)  

IMD nature 
animals 

emissions 
waste 
food 
cleaning  
industry 
smoke

0.24*** 
0.16*** 

-0.16*** 
-0.26*** 
-0.1*** 
-0.19*** 
-0.2*** 
-0.15*** 



Smell (London)  

LIVING ENVIRONMENT nature 
animals 

emissions 
waste 
food 
cleaning  
industry 
smoke 
synthetic

0.29*** 
0.17*** 

-0.23*** 
-0.35*** 
-0.4*** 
-0.35*** 
-0.24*** 
-0.3*** 
-0.15***



Smell (London)  

LIVING ENVIRONMENT 

INCOME

animals 
nature 

emissions 
waste 
cleaning  
industry 

0.12*** 
0.2*** 

-0.1*** 
-0.18*** 
-0.12*** 
-0.15*** 



Smell (London)  

LIVING ENVIRONMENT 

INCOME 

HEALTH 

animals 
nature 

waste 
food 
cleaning  
industry 
smoke 

0.12*** 
0.21*** 

-0.23*** 
-0.14*** 
-0.17*** 
-0.18*** 
-0.12*** 



Smell (London)  

animals 

waste 
cleaning  

0.1*** 

-0.19*** 
-0.14*** 

LIVING ENVIRONMENT 

INCOME 

HEALTH 

CRIME 



Smell (London)  

animals 
nature 

emissions 
waste 
industry 
smoke 

0.14*** 
0.17*** 

-0.15*** 
-0.19*** 
-0.16*** 
-0.12*** 

LIVING ENVIRONMENT 

INCOME 

HEALTH 

CRIME 

HOUSING 



Sound (London)  

IMD human 
nature 

mechanical 
motorised 
music 

0.11*** 
0.11*** 

-0.14*** 
-0.17*** 
-0.17***



Sound (London)  

LIVING ENVIRONMENT nature 

mechanical 
motorized 
music 
indoor 

0.12*** 

-0.27*** 
-0.22*** 
-0.36*** 
-0.31***



Crime 2008-2016 (London)
nature 
animals 

emissions 
waste 
metro 
cleaning 
industry 
smoke 
food 
synthetic

-0.38 
-0.24 

0.43 
0.35 
0.35 
0.32 
0.3 
0.27 
0.19 
0.19



Crime 2008-2016 (London)

nature 
humans 

motorised 
mechanical 
music

-0.21 
-0.16 

0.36 
0.17 
0.3 



Census Bureau ACS Economic Profile

• Employment status 
• Commuting to work 
• Occupation 
• Industry 
• Class of worker 
• Health Insurance coverage 

• Poverty level 

New York (NTA level)
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MEDIAN HOUSEHOLD INCOME (DOLLARS)

LOW

HIGH



Smell (NYC)

MEDIAN HOUSEHOLD INCOME 

MEDIAN NON-FAMILY INCOME

nature 
food 

metro 

+tobacco

0.38*** 
0.16*** 

-0.43*** 

0.22**



Income per household (NYC)
emissions nature waste, industry, synthetic, smoke metro

<10K 0.16 -0.39 0.45
10K-15K 0.15 -0.36 0.44
15K-25K -0.38 0.15 (waste) 0.44
25K-35K -0.29 0.31
35K-50K -0.2 -0.25 (smoke) 0.26
50K-75K -0.2 0.21 -0.27 (industry), -0.25 (smoke) -0.15
75K-100K -0.21 0.41 -0.52
100K-150K 0.41 -0.54
150K-200K 0.36  0.15 (smoke) -0.45
>200K 0.3 0.25 (smoke) -0.35
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LOW

HIGH

COMMUTING TO WORK - CAR



Eureka Presentation

LOW

HIGH

COMMUTING TO WORK - PUBLIC TRANSPORT



Commuting (NYC)
CAR 

PUBLIC TRANSPORTATION 

WALKED 

WORKED AT HOME  

nature (0.3) waste (-0.15) cleaning (-0.25) 
emissions (-0.2) food (-0.2) metro (-0.49) 
synthetic (-0.24) smoke (-0.38) 

nature (-0.32) waste (0.18) cleaning (0.24) 
industry (0.17) metro (0.54) smoke (0.22) 

nature (-0.25) food (0.15) industry (0.27) 
metro (0.41)  synthetic (0.32) smoke (0.28) 

cleaning (0.16) emissions (0.17) industry (0.2) 
metro (0.15) synthetic (0.32) smoke (0.36) 



Sound (NYC)

MEDIAN HOUSEHOLD INCOME 

MEDIAN NON-FAMILY INCOME

nature 

motorized 

+music

0.3*** 

-0.43*** 

0.17**



Income per household (NYC)

human nature motorized

<10K 0.3 -0.29 0.24
10K-15K 0.29 -0.27 0.29
15K-25K 0.29 -0.3 0.34
25K-35K 0.27 -0.26 0.29
35K-50K 0.3 -0.19 0.29
50K-75K 0.28 -0.22 -
75K-100K -0.33 0.36 -0.28
100K-150K -0.18 0.37 -0.36
>200K 0.17 0.24 -0.37



Commuting (NYC)
CAR 

PUBLIC TRANSPORTATION 

WALKED 

WORKED AT HOME  

nature (0.37) human (-0.45) mechanical 
(-0.17) music (-0.5) 

nature (-0.36) human (0.28) mechanical 
(0.23) music (0.28) 

nature (-0.3) human (0.39) music (0.41) 

nature (-0.25) motorised (-0.17) human 
(0.28) indoor (0.29) music (0.35) 
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Walkability+Activities+Ambiance
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IS WALKABILITY QUANTIFIABLE?
W W W  2 0 1 5
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“The General Theory of Walkability explains 
how, to be favored, a walk has to satisfy four 
main conditions: it must be useful, safe, 
comfortable, and interesting. Each of these 
qualities is essential and none alone is 
sufficient.” 

Public space 
surrendered to cars

Jeff Speck
WALKABLE CITY



Questions (safety)

• Can safe streets be identified by night activity? 
• Safe streets are photographed not only during the day but also at 

night, while unsafe ones mostly during the day 

• Can safe streets be identified by activity segmented by 
gender or age? 
• Safe streets are predominantly visited by a male population        

(r = 0.58) 

• Safe streets are predominantly visited by an adult population     
(r = 0.32)



Questions (walkability)

• Can walkable streets be identified by the presence 
of specific types of places? 

• Can walkability be predicted? 
• yes!
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Activities



Profiling urban activities

• Identifying activity words 
• From Flickr 

• From web documents 

• Expansion of activity words 

• Focus on private activities 
• indoor vision tag 

• Clustering of activity words in a hierarchical taxonomy
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Urban Activities  
Wheel



Results (some)

+work&study 
+protest 
+self 
+show 

+education(NYC) +housing (L) 
-education (L), -income (L/NYC) 
-income 
-crime (L), -education, -employment, 
-income (NYC)



Diversity

London New York

economic development is associated with activity diversity
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Limitations

• Not exhaustive list of activities 
• Population-demographic bias 
• Self-selection bias 

• well-to-do areas might be over-represented 

• Results do not speak to causality
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AMBIENCE
Can the ambience of a place be 

predicted from pictures?
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Urban Ambiance 
Wheel



SONIC

OLFACTORY

VISUAL

URBAN FABRIC 

AMBIANCE

ACTIVITIES

WALKABILITY
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Emotions
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EMOTIONS

To model sentiment we adopt the EmoLex 
lexicon that follows the 8 primary emotions 
from Plutchik’s psychoevolutionary theory.
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EMISSIONS

WASTE
CORRELATION BETWEEN 
EMOTIONS AND SMELLS 

FOOD

NATURE
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MUSIC

HUMAN

TRAFFIC

CORRELATION BETWEEN 
EMOTIONS AND SOUNDS 
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MUSIC

Music triggers 
both joy and 
sadness



Example (London)

sadness 

negative 

joy 

-income, -employment, -health, -crime, -housing,  
-living environment 

-income, -health, -education, -employment 

+education, +housing  



SONIC

OLFACTORY

VISUAL

URBAN FABRIC 

AMBIANCE

ACTIVITIES

WALKABILITY

EMOTIONS
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Ongoing work



SONIC

OLFACTORY

VISUAL

URBAN FABRIC 

AMBIANCE

ACTIVITIES

WALKABILITY

EMOTIONS

SARCASM

EMOJIS
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SARCASM
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LITERAL INTENDED≠



Some previous work

• Lexical and linguistic markers 
• Context 
• hashtags, emojis 

• previous posts 

• author profile, propensity to sarcastic utterances
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SOCIAL MEDIA IS MULTIMODAL
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METADATA VISUALS

TEXT
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Great day today
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Great day today
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Text+Image

Image as a contextual clue
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POSTS CONTAINING #SARCASM OR #SARCASTIC

DATA

517K 63K 20K
99% 40% 7.56%

TEXT+IMAGE TEXT+IMAGE TEXT+IMAGE
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CHARACTERISE THE ROLE OF IMAGES
Study of the interplay between textual and visual components

1
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COLLECT A GROUND TRUTH FOR SARCASM
A. Evaluate the impact of visuals as a source for context 
B. Identify sarcastic posts with a high level of agreement  

CHARACTERISE THE ROLE OF IMAGES
Study of the interplay between textual and visual components

1

2
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ASK THE CROWD!

1K POSTS

5 JUDGEMENTS
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SECOND EXPERIMENT

For all the posts that are judged not sarcastic in 
the previous step, show the text and the image

FIRST EXPERIMENT

Show only the textual component of a post
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Text+Image
37,4%

Text Only
37,8%

Not Sarcastic
24,8%

Text+Image
44,5%

Text Only
23,6%

Not Sarcastic
31,9%

\
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COLLECT A GROUND TRUTH FOR SARCASM
A. Evaluate the impact of visuals as a source for context 
B. Identify sarcastic posts with a high level of agreement  

DETECT SARCASM
SVM Fusion+Deep learning fusion approaches 

CHARACTERISE THE ROLE OF IMAGES
Study of the interplay between textual and visual components

1

2

3



How can we detect sarcasm in 
multimodal posts?

• Different fusion approaches 
• SVM based 

• Deep learning 

• Open questions: 
• Does the use of figurative language change according to socio-

demographic variables? 

• Does the use of figurative language change in different areas of the city?
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Questions?

@rschifan

http://www.di.unito.it/~schifane

schifane@di.unito.it


