Authorship Attribution: Using Rich Linguistic Features when Training Data is Scarce

Ludovic Tanguy, Franck Sajous, Basilio Calderone and Nabil Hathout

CLLE-ERSS: CNRS & University of Toulouse, France

PAN 2012 – Authorship Attribution - CLEF

- General method for all subtasks
 - ☐ Maximum Entropy classifier (csvLearner)
 - □ Substantial effort in feature engineering
 - Many linguistically rich features
 - □ No feature selection
 - □ Whole texts as items (no splitting)
- Four runs were submitted:
 - □ Run 1 (CLLE-ERSS1): char. trigrams + all linguistic features
 - □ Run 2 (CLLE-ERSS2): character trigrams only
 - □ Run 3 (CLLE-ERSS3): bag of words (lemma frequencies)
 - □ Run 4 (CLLE-ERSS4): a selection of 60 synthetic features

Processing

- All training and test texts were :
 - □ Normalised for encoding
 - □ De-hyphenised (based on a lexicon)
 - □ POS-tagged and parsed (Stanford CoreNLP)
- No split?
 - Using splits of the same few texts is misleading (textual cohesion)
 - □ No cross-validation data available...

List of features (1)

- Contracted forms
 - □ Average ratio of frequencies (« *do not* » vs « *don't* », etc.)
- Phrasal verbs
 - ☐ Frequency of all verb-prepositions pairs (« *put on* », etc.)
- Lexical genericity and ambiguity
 - □ Average depth in WordNet
 - □ Average number of synsets per word
- Frequency of POS trigrams
- Syntactic dependencies
 - □ Frequency of all word-relation-word triples (« cat subj eat »
- Syntactic complexity
 - □ Average depth of syntactic parse trees
 - □ Average length of syntactic links

List of features (2)

- Lexical cohesion
 - □ Density of semantically-similar word pairs
 - (according to Distributional Memory database)
- Morphological complexity
 - □ Frequency of suffixed words
- Lexical absolute frequency
 - □ Repartition of words according to Nation's wordlists
- Punctuation and case
 - □ Frequency of punctuation marks
 - □ Frequency of uppercased words
- Direct speech
 - □ Ratio of sentences between quotes
- First person narrative
 - □ Relative frequency of « I » (per verb, outside quotes)

- Closed-class tasks (A,C,I)
 - □ Choose the author with highest probability
- Open-class tasks (B,D,J)
 - □ Author is « unknown » if

$$max(p) < mean(p) + 1.25 * st.dev(p)$$

- Results:
 - □ Overall:
 - All rich+3char > synthetic rich > lemmas > 3char
 - □ Results:
 - Good for A, I and J
 - Average for B
 - Bad for C and D

- Lesion studies on test data for tasks A and C
 - Measuring accuracy with different combinations of features
 - □ Average accuracy gain when adding each subset

Feature Subset	Gain for task A	Gain for task C
Punctuation & case	+0.204	-0.040
Suffix frequency	+0.097	+0.009
Absolute lexical frequency	+0.030	-0.003
Syntactic complexity	+0.015	+0.006
Ambiguity/genericity	+0.012	+0.008
Lexical cohesion	+0.002	-0.000
Phrasal verbs (synthetic)	-0.000	+0.022
Morphological complexity	-0.005	-0.002
Phrasal verbs (detail)	-0.006	-0.006
Contractions	-0.014	+0.018
First/third person narrative	-0.027	-0.026
POS trigrams	-0.028	+0.045
Char. trigrams	-0.034	+0.206
Syntactic dependencies	-0.059	+0.089

$$r = -0.48$$

- Using MaxEnt as an unsupervised classifier
 - □ Method proposed by DePauw and Wagacha, 2008
- Principles:
 - □ Training: all paragraphs as training items
 - Class value = paragraph ID
 - □ Reclassifying: every paragraph processed by the trained classifier
 - Result = square matrix of probabilities (Mp)
 - Distance matrix between paragraphs: Md= -log(Mp)
 - □ Clustering: regroup similar paragraphs
 - Hierarchical ascending clustering on Md
 - ☐ Result: highest level clusters

■Task F, Text 4, Run CLLE-ERSS1 (correct guess)

Conclusions

- Average results for traditional tasks, quite disappointing
- □ Good results for paragraph intrusions
- Overall, rich features are once more proven to be an improvement over character trigrams
- There's still room for improvement with feature selection
 - Feature efficiency varies greatly across tasks and authors
 - Very small linguistic feature subsets can be sufficient