Overview of the Celebrity Profiling Task at PAN 2020

Matti Wiegmann, Benno Stein, Martin Potthast Bauhaus-Universität Weimar webis.de

Motivation

Celebrity Profiling 2020:

Given the Twitter feeds of the followers of a celebrity, determine the demographics.

Motivation

Celebrity Profiling 2019:

Given the Twitter feeds of the followers of a celebrity, determine the demographics.

Why Celebrities?

- They write many public, high-quality texts.
- Many personal demographics are public knowledge.

Motivation

Celebrity Profiling 2019:

Given the Twitter feeds of the followers of a celebrity, determine the demographics.

Why Celebrities?

- □ They write many public, high-quality texts.
- Many personal demographics are public knowledge.
- → This is not the case for many users on social media.

Motivation

Celebrity Profiling 2020:

Given the (?) of a celebrity, determine the demographics.

How can we profile users that do not write a lot?

Motivation

Celebrity Profiling 2020:

Given the Twitter profile of a celebrity, determine the demographics.

How can we profile users that do not write a lot?

□ Author Metadata: Biography, profile picture, ...

Motivation

Celebrity Profiling 2020:

Given the behavior on Twitter of a celebrity, determine the demographics.

How can we profile users that do not write a lot?

- Author Metadata: Biography, profile picture, ...
- Author Behavior: Retweets, Likes, ...

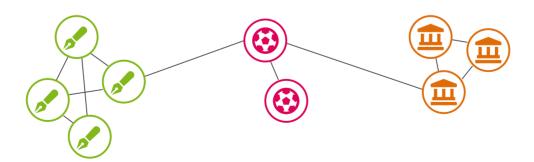
Motivation

Celebrity Profiling 2020:

Given the Twitter feeds of the followers of a celebrity, determine the demographics.

How can we profile users that do not write a lot?

- □ Author Metadata: Biography, profile picture, ...
- Author Behavior: Retweets, Likes, ...
- Social Graph: Homophily.



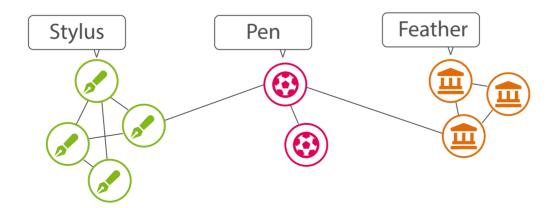
Motivation

Celebrity Profiling 2020:

Given the Twitter feeds of the followers of a celebrity, determine the demographics.

How can we profile users that do not write a lot?

- □ Author Metadata: Biography, profile picture, ...
- □ Author Behavior: Retweets, Likes, ...
- Social Graph: Homophily and language variation.

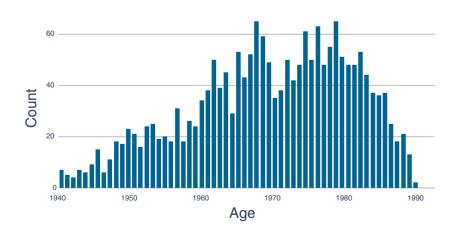


Task

Celebrity Profiling 2020:

Given the Twitter feeds of the followers of a celebrity, determine the demographics:

□ Age,

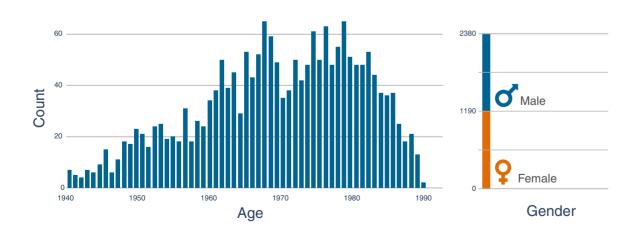


Task

Celebrity Profiling 2020:

Given the Twitter feeds of the followers of a celebrity, determine the demographics:

- □ Age,
- □ Gender,

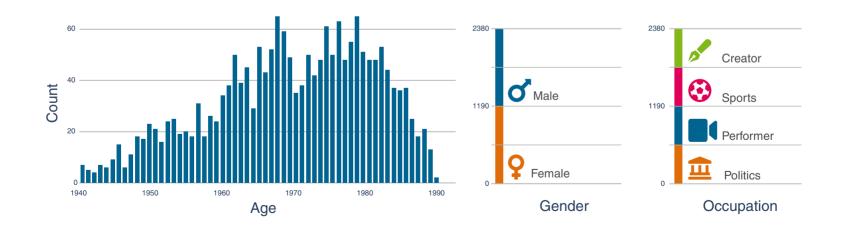


Task

Celebrity Profiling 2020:

Given the Twitter feeds of the followers of a celebrity, determine the demographics:

- □ Age,
- Gender, and
- Occupation.



Data

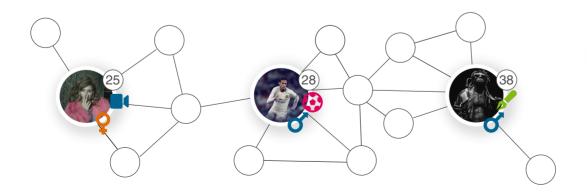
Dataset creation:

1. Extract celebrities with matching profiles from a Corpus [ACL 2019].

Data

Dataset creation:

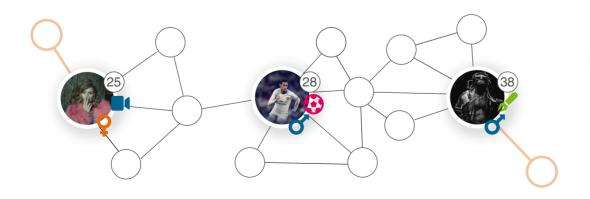
- 1. Extract celebrities with matching profiles from a Corpus [ACL 2019].
- 2. Download follower network.



Data

Dataset creation:

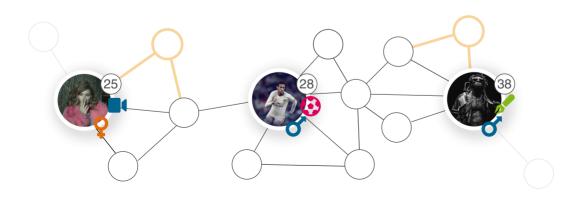
- 1. Extract celebrities with matching profiles from a Corpus [ACL 2019].
- 2. Download follower network.
- Eliminate inactive users.
 - Users with few connections in the network.



Data

Dataset creation:

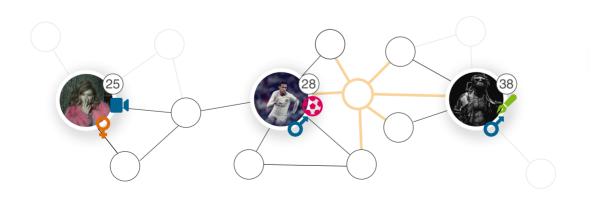
- 1. Extract celebrities with matching profiles from a Corpus [ACL 2019].
- 2. Download follower network.
- 3. Eliminate inactive users, passive users.
 - □ Users with less than 100 original, English tweets.



Data

Dataset creation:

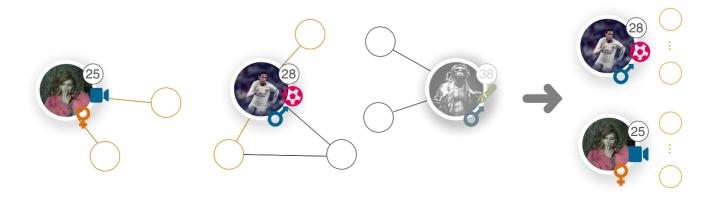
- 1. Extract celebrities with matching profiles from a Corpus [ACL 2019].
- 2. Download follower network.
- 3. Eliminate inactive users, passive users, and other hub users.
 - Users with many followers or atypical behavior.



Data

Dataset creation:

- 1. Extract celebrities with matching profiles from a Corpus [ACL 2019].
- 2. Download follower network.
- 3. Eliminate inactive users, passive users, and other hub users.
- 4. Sample 10 followers per celebrity in a balanced dataset.
 - □ **Training dataset**: 1,980 celebrities.
 - □ **Test dataset**: 400 celebrities.



Evaluation

Performance is measured as the harmonic mean of the classwise averaged F_1 .

$$cRank = \frac{3}{\frac{1}{F_{1,gender}} + \frac{1}{F_{1,occupation}} + \frac{1}{F_{1,age}}}$$

Evaluation

Performance is measured as the harmonic mean of the classwise averaged F₁.

$$cRank = \frac{3}{\frac{1}{F_{1,gender}} + \frac{1}{F_{1,occupation}} + \frac{1}{F_{1,age}}}$$

Variable-bucketed age evaluation:

- Predict author age directly.
- Count near-misses as correct, depending on the age of the author.
- Apply multi-class evaluation.

Results

Baseline:

- □ Algorithm: Logistic regression.
- □ Features: Bags of word 1 and 2-grams, TD-IDF weighted.
- □ Age was predicted in 5 classes: 1947, 1963, 1975, 1985, and 1994.

Results

Baseline:

- Algorithm: Logistic regression.
- Features: Bags of word 1 and 2-grams, TD-IDF weighted.
- Age was predicted in 5 classes: 1947, 1963, 1975, 1985, and 1994.

Trained and tested on all followers' tweets as a lower bound.

Participant	Test dataset			
	cRank	Age	Gender	Occupation

baseline-follower 0.47

Results

Baseline:

- □ Algorithm: Logistic regression.
- Features: Bags of word 1 and 2-grams, TD-IDF weighted.
- □ Age was predicted in 5 classes: 1947, 1963, 1975, 1985, and 1994.

Trained and tested on all followers' tweets as a lower bound.

Trained and tested on the celebrities' tweets as a goalpost.

Participant	Test dataset			
	cRank	Age	Gender	Occupation
baseline-oracle	0.63			

Results

As proof of concept: Profiling users from their followers' texts works.

Baseline was beaten by a healty margin.

Participant	Test dataset			
	cRank	Age	Gender	Occupation
baseline-oracle	0.63			
Hodge and Price	0.58			
Koloski et al.	0.52			
Alroobaea et al.	0.47			
baseline-follower	0.47			

Results

As proof of concept: Profiling users from their followers' texts works.

- Baseline was beaten by a healty margin.
- □ Submissions predict young users (20-30) better by .2 F₁.

Test dataset			
cRank	Age	Gender	Occupation
0.63	0.50		
0.58	0.43		
0.52	0.41		
0.47	0.32		
0.47	0.36		
	0.63 0.58 0.52 0.47	cRank Age 0.63 0.50 0.58 0.43 0.52 0.41 0.47 0.32	cRank Age Gender 0.63

Results

As proof of concept: Profiling users from their followers' texts works.

- Baseline was beaten by a healty margin.
- □ Submissions predict young users (20-30) better by .2 F₁.
- Submissions skew towards the "Male" class.

Test dataset			
cRank	Age	Gender	Occupation
0.63	0.50	0.75	
0.58	0.43	0.68	
0.52	0.41	0.62	
0.47	0.32	0.70	
0.47	0.36	0.58	
	0.63 0.58 0.52 0.47	cRank Age 0.63 0.50 0.58 0.43 0.52 0.41 0.47 0.32	cRank Age Gender 0.63 0.50 0.75 0.58 0.43 0.68 0.52 0.41 0.62 0.47 0.32 0.70

Results

As proof of concept: Profiling users from their followers' texts works.

- Baseline was beaten by a healty margin.
- \square Submissions predict young users (20-30) better by .2 F_1 .
- Submissions skew towards the "Male" class.
- Submissions beat the oracle on occupation, although "Creators" is a problematic class (.46 F₁).

Participant	Test dataset			
	cRank	Age	Gender	Occupation
baseline-oracle	0.63	0.50	0.75	0.70
Hodge and Price	0.58	0.43	0.68	0.71
Koloski et al.	0.52	0.41	0.62	0.60
Alroobaea et al.	0.47	0.32	0.70	0.60
baseline-follower	0.47	0.36	0.58	0.52

Outlook

We still have many open questions:

Does the communities' text reflect the demographics of a celebrity?

Outlook

We still have many open questions:

- □ Does the communities' text reflect the demographics of a celebrity?
- Do celebrities influence the writing of their fans?
- What are the rules of style formation?

See you at CLEF 2021!