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Celebrity Profiling
Motivation

Celebrity Profiling 2020:
Given the Twitter feeds of the followers of a celebrity, determine the demographics.
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Celebrity Profiling
Motivation

Celebrity Profiling 2019:
Given the Twitter feeds of the followers of a celebrity, determine the demographics.

Why Celebrities?

q They write many public, high-quality texts.

q Many personal demographics are public knowledge.
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Celebrity Profiling
Motivation

Celebrity Profiling 2019:
Given the Twitter feeds of the followers of a celebrity, determine the demographics.

Why Celebrities?

q They write many public, high-quality texts.

q Many personal demographics are public knowledge.

Ü This is not the case for many users on social media.
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Celebrity Profiling
Motivation

Celebrity Profiling 2020:
Given the (?) of a celebrity, determine the demographics.

How can we profile users that do not write a lot?
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Celebrity Profiling
Motivation

Celebrity Profiling 2020:
Given the Twitter profile of a celebrity, determine the demographics.

How can we profile users that do not write a lot?

q Author Metadata: Biography, profile picture, ...
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Celebrity Profiling
Motivation

Celebrity Profiling 2020:
Given the behavior on Twitter of a celebrity, determine the demographics.

How can we profile users that do not write a lot?

q Author Metadata: Biography, profile picture, ...

q Author Behavior: Retweets, Likes, ...
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Celebrity Profiling
Motivation

Celebrity Profiling 2020:
Given the Twitter feeds of the followers of a celebrity, determine the demographics.

How can we profile users that do not write a lot?

q Author Metadata: Biography, profile picture, ...

q Author Behavior: Retweets, Likes, ...

q Social Graph: Homophily.
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Celebrity Profiling
Motivation

Celebrity Profiling 2020:
Given the Twitter feeds of the followers of a celebrity, determine the demographics.

How can we profile users that do not write a lot?

q Author Metadata: Biography, profile picture, ...

q Author Behavior: Retweets, Likes, ...

q Social Graph: Homophily and language variation.

Stylus Pen Feather
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Celebrity Profiling
Task

Celebrity Profiling 2020:
Given the Twitter feeds of the followers of a celebrity, determine the demographics:

q Age,
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Celebrity Profiling
Task

Celebrity Profiling 2020:
Given the Twitter feeds of the followers of a celebrity, determine the demographics:

q Age,

q Gender,
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Celebrity Profiling
Task

Celebrity Profiling 2020:
Given the Twitter feeds of the followers of a celebrity, determine the demographics:

q Age,

q Gender, and

q Occupation.
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Celebrity Profiling
Data

Dataset creation:

1. Extract celebrities with matching profiles from a Corpus [ACL 2019].
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Celebrity Profiling
Data

Dataset creation:

1. Extract celebrities with matching profiles from a Corpus [ACL 2019].

2. Download follower network.
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Celebrity Profiling
Data

Dataset creation:

1. Extract celebrities with matching profiles from a Corpus [ACL 2019].

2. Download follower network.

3. Eliminate inactive users.

q Users with few connections in the network.
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Celebrity Profiling
Data

Dataset creation:

1. Extract celebrities with matching profiles from a Corpus [ACL 2019].

2. Download follower network.

3. Eliminate inactive users, passive users.

q Users with less than 100 original, English tweets.
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Celebrity Profiling
Data

Dataset creation:

1. Extract celebrities with matching profiles from a Corpus [ACL 2019].

2. Download follower network.

3. Eliminate inactive users, passive users, and other hub users.

q Users with many followers or atypical behavior.
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Celebrity Profiling
Data

Dataset creation:

1. Extract celebrities with matching profiles from a Corpus [ACL 2019].

2. Download follower network.

3. Eliminate inactive users, passive users, and other hub users.

4. Sample 10 followers per celebrity in a balanced dataset.

q Training dataset: 1,980 celebrities.
q Test dataset: 400 celebrities.
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Celebrity Profiling
Evaluation

Performance is measured as the harmonic mean of the classwise averaged F1.

cRank =
3

1
F1,gender

+ 1
F1,occupation

+ 1
F1,age
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Celebrity Profiling
Evaluation

Performance is measured as the harmonic mean of the classwise averaged F1.

cRank =
3

1
F1,gender

+ 1
F1,occupation

+ 1
F1,age

Variable-bucketed age evaluation:

q Predict author age directly.

q Count near-misses as correct, depending on the age of the author.

q Apply multi-class evaluation.
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Celebrity Profiling
Results

Baseline:

q Algorithm: Logistic regression.
q Features: Bags of word 1 and 2-grams, TD-IDF weighted.
q Age was predicted in 5 classes: 1947, 1963, 1975, 1985, and 1994.
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Celebrity Profiling
Results

Baseline:

q Algorithm: Logistic regression.
q Features: Bags of word 1 and 2-grams, TD-IDF weighted.
q Age was predicted in 5 classes: 1947, 1963, 1975, 1985, and 1994.

Trained and tested on all followers’ tweets as a lower bound.

Participant Test dataset
cRank Age Gender Occupation

baseline-follower 0.47
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Celebrity Profiling
Results

Baseline:

q Algorithm: Logistic regression.
q Features: Bags of word 1 and 2-grams, TD-IDF weighted.
q Age was predicted in 5 classes: 1947, 1963, 1975, 1985, and 1994.

Trained and tested on all followers’ tweets as a lower bound.
Trained and tested on the celebrities’ tweets as a goalpost.

Participant Test dataset
cRank Age Gender Occupation

baseline-oracle 0.63

baseline-follower 0.47
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Celebrity Profiling
Results

As proof of concept: Profiling users from their followers’ texts works.

q Baseline was beaten by a healty margin.

Participant Test dataset
cRank Age Gender Occupation

baseline-oracle 0.63
Hodge and Price 0.58
Koloski et al. 0.52
Alroobaea et al. 0.47
baseline-follower 0.47
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Celebrity Profiling
Results

As proof of concept: Profiling users from their followers’ texts works.

q Baseline was beaten by a healty margin.
q Submissions predict young users (20-30) better by .2 F1.

Participant Test dataset
cRank Age Gender Occupation

baseline-oracle 0.63 0.50
Hodge and Price 0.58 0.43
Koloski et al. 0.52 0.41
Alroobaea et al. 0.47 0.32
baseline-follower 0.47 0.36
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Celebrity Profiling
Results

As proof of concept: Profiling users from their followers’ texts works.

q Baseline was beaten by a healty margin.
q Submissions predict young users (20-30) better by .2 F1.
q Submissions skew towards the “Male” class.

Participant Test dataset
cRank Age Gender Occupation

baseline-oracle 0.63 0.50 0.75
Hodge and Price 0.58 0.43 0.68
Koloski et al. 0.52 0.41 0.62
Alroobaea et al. 0.47 0.32 0.70
baseline-follower 0.47 0.36 0.58
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Celebrity Profiling
Results

As proof of concept: Profiling users from their followers’ texts works.

q Baseline was beaten by a healty margin.
q Submissions predict young users (20-30) better by .2 F1.
q Submissions skew towards the “Male” class.
q Submissions beat the oracle on occupation, although “Creators” is a

problematic class (.46 F1).

Participant Test dataset
cRank Age Gender Occupation

baseline-oracle 0.63 0.50 0.75 0.70
Hodge and Price 0.58 0.43 0.68 0.71
Koloski et al. 0.52 0.41 0.62 0.60
Alroobaea et al. 0.47 0.32 0.70 0.60
baseline-follower 0.47 0.36 0.58 0.52
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Celebrity Profiling
Outlook

We still have many open questions:

q Does the communities’ text reflect the demographics of a celebrity?
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Celebrity Profiling
Outlook

We still have many open questions:

q Does the communities’ text reflect the demographics of a celebrity?

q Do celebrities influence the writing of their fans?

q What are the rules of style formation?

See you at CLEF 2021!
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