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Abstract The paper gives a brief overview of the four shared tasks that are to be
organized at the PAN 2020 lab on digital text forensics and stylometry, hosted at
CLEF conference. The tasks include author profiling, celebrity profiling, cross-
domain author verification, and style change detection, seeking to advance the
state of the art and to evaluate it on new benchmark datasets.

1 Introduction

PAN is a series of scientific events and shared tasks on digital text forensics and stylom-
etry, bringing together scientists, industry professionals, and public institutions from
information retrieval and NLP to work on challenges in authorship analysis, original-
ity, and computational ethics. Since its inception in 2007, PAN has hosted 22 shared
tasks at 21 different events with continually increasing reception within the community.
The latest installment of PAN at CLEF 2019 had a strong focus on authorship analy-
sis, featuring tasks on author profiling, celebrity profiling, authorship attribution, and
style change detection. Continuing in 2020, PAN will again organize four shared tasks
in these domains. The first task, profiling fake news spreaders on Twitter, addresses
the critical societal problem of fake news from the perspective of author profiling, by
studying stylistic deviations of users inclined to spread them. The second task, cross-
domain authorship verification, studies the stylistic association between authors and
their works in a setting without the interference of domain-specific vocabulary. The
third task, celebrity profiling, analyzes the presumed influence that celebrities have on
their followers to study whether celebrities can be profiled based on their followership.
The fourth task, style change detection, continues the research on multi-author docu-
ments by attempting to separate segments of a document based on authorship.

A milestone in PAN’s development has been the development of the TIRA plat-
form, switching from the traditional submission of answers to software submissions.
The guaranteed availability of all submitted software greatly enhances the reproducibil-
ity of methods and PAN is committed to continue this endeavor.
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2 Author Profiling

Author profiling distinguishes between classes of authors by studying how language is
shared by people. This helps in identifying profiling aspects such as age, gender, and
language variety, among others. In the years 2013-2018, we addressed several aspects
in the shared tasks we organized at PAN.1 In 2013, the aim was to identify gender
and age in social media texts for English and Spanish [22]. The corpus included chat
lines of potential pedophiles with the purpose of investigating the robustness of the
best-performing systems also from this perspective (i.e., identifying the age of the pe-
dophiles). Age classes included a gap in between: 10s (13-17), 20s (23-27), 30s (33-48).
Results in both languages and in both subtasks were below 70% accuracy.

In 2014, the aims of the shared task were twofold: to address age identification from
a continuous perspective (without gaps between the age classes), and to include other
genres such as blogs, Twitter and reviews (in Trip Advisor), both in English and Span-
ish. The best results were obtained on Twitter, where users showed a more spontaneous
way to communicate [20]. In 2015, apart from age and gender identification, we ad-
dressed also personality recognition in Twitter in English, Spanish, Dutch and Italian.
The best results (above 80% accuracy) were obtained on English data [24]. In 2016, we
addressed the problem of cross-genre gender and age identification (training on Twitter
data and testing on blogs and social media data), in English, Spanish, and Dutch. The
best results were obtained on blogs for English with an accuracy above 75% for gender
and below 60% for age identification [25]. In 2017, we addressed gender and language
variety identification in Twitter, in English, Spanish, Portuguese and Arabic. The low-
est results were obtained for Arabic with an accuracy of 80% for gender and 83% for
language variety identification [23]. In 2018, our aim was to investigate if approaching
gender identification in Twitter from a multimodal perspective (e.g., considering also
images of the links in tweets) could improve results. The corpus was composed of En-
glish, Spanish, and Arabic tweets. Only for Arabic it was possible to improve accuracy
(albeit less than 2%) [21].

Last, in 2019, in the shared task on bots and gender profiling, we aimed at investi-
gating how difficult it is to discriminate bots from humans on the basis only of textual
data, and what were the most difficult types of bots. We used Twitter data both in En-
glish and Spanish and the best-performing systems showed that it is possible to profile
bots with an accuracy above 90%. Advanced bots that generated human-like language,
also with metaphors, were the most difficult to be profiled. It is interesting to mention
that when bots were profiled as humans, they were mostly confused with males [19].
The number of the participants in the several editions of the author profiling task can be
seen in Figure 1.

Profiling Fake News Spreaders on Twitter at PAN’20

Fake news can be very harmful since they are usually created with the aim to ma-
nipulate public opinions and beliefs. Recently fake news detection has gained a lot of

1 To generate the corpora, we followed a methodology that complies with the EU General Data
Protection Regulation [18].
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Figure 1. Evolution of the number of participants and countries in the author profiling task.

attention from the research community. Indeed, their early detection can prevent further
dissemination of false claims and rumors, but it’s a hard and time-consuming task, since
they involve manual annotation. Recent approaches that have been proposed [7, 6, 16]
are effective in detecting false claims that already have been disseminated, but not the
newly emerging ones. In addition, these models do not take into account the role of
users that unintentionally or intentionally share the false claims and who play a critical
role in their propagation. To this end, in this task, we aim at identifying and profiling
fake news spreaders on social media as a first step towards preventing fake news from
being propagated among online users.

We propose a new task that focuses on fake and real news spreaders detection. The
detection of accounts that are possible spreaders of fake news is very important for
the field of misinformation detection. These accounts could be operated by laymen [2],
“professional” trolls [4], and even bots [14]. The fake news spreaders might be identified
from several possible perspectives: textual, semantic, sentiment, social variables, etc. A
previous work [5] showed that word embeddings and style features are important to
profile such accounts, whereas other information, such as hashtags are not useful.

Given a user with her corresponding tweet stream, the task is to identify the user as
faker (fake news spreader), or legitimate user (real news spreader). For the evaluation
setup, we create a collection of Twitter accounts, each with a sample of tweets from her
timeline. The collection has been created in English and Spanish, and it is balanced.
Thus, we are going to use accuracy to evaluate the performance of the systems.

3 Celebrity Profiling

Celebrity profiling is author profiling applied to celebrities. Celebrities can contribute
much to author profiling research: they are prolific social media users, often supply-
ing extensive writing samples as well as personal details. Celebrities build a consistent
public persona either themselves or with the help of public relations agents. In addition,
celebrities are in a unique position within their communities: they are highly influential
on their followers, frequently considered trustworthy and reliable, and they act as hubs
for like-minded people on social media. Celebrity Profiling [30] is the newest addition
to PAN’s shared tasks. In 2019 [31], the goal was to determine the demographics age,
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gender, occupation, and fame from the timelines of celebrities on Twitter. Eight par-
ticipants submitted solutions, which, given sufficient training data, performed well on
demographics with a coherent separability by topic or domain. Poor performance was
achieved in cases where certain demographics are rare (e.g., non-binary genders), or
where they are underrepresented (e.g., age groups for very low and high ages). Also
domain-invariant demographics, like the scientific creative occupations, posed prob-
lems. The results of the first shared task on celebrity profiling are coherent with most
of the related work in author profiling, authorship analysis, and computational stylom-
etry in general: the domain-specific vocabulary is the primary discriminator and demo-
graphic differences are often reflected by topics.

Celebrity Profiling at PAN’20

The unique contributions of celebrities on social media towards author profiling re-
search is their domain-variant claim-to-fame and the varying degree of influence they
exert on their followers. The formation of closely connected communities around
celebrities, who are also under their influence, allows us to investigate the role of author
characteristics, domain, and demographic on language use. For the upcoming edition
of celebrity profiling, we focus on separating a celebrity author’s textual characteristics
from domain-specific language use, using the demographics as an indicator. Instead of
predicting the authors demographics from his text alone, we use the texts of highly in-
fluenced individuals, while the prediction targets remain largely the same as last year
(age, gender, occupation). The results of this shared task will help us to determine for
the first time, whether and to what extent an influencer’s demographics and characteris-
tics can be predicted from his or her followers. Tangible applications, besides academic
interest, include methods to profile users with few own text samples, and to judge influ-
ence exerted between users in a community.

4 Author Identification

Authentication is a major concern in today’s global information society and in this sense
it does not come as a surprise that author identification has been a long-running task at
PAN. Author identification still poses a challenging empirical problem in fields related
to information and computer science, but the underlying methods are nowadays also
increasingly used as an auxiliary technology in more applied domains, such as literary
studies or forensic linguistics. These communities crucially rely on trustworthy, trans-
parent benchmark initiatives that reliably establish the state of the art in the field [17].
Author identification is concerned with the automated identification of the individual(s)
who authored an anonymous document on the basis of text-internal properties related to
language and writing style [27, 9, 12]. At different editions of PAN (since 2007), author
identification has been studied in multiple incarnations: AUTHORSHIP ATTRIBUTION:
given a document and a set of candidate authors, determine which of them wrote the
document (2011-2012, 2016-2020); AUTHORSHIP VERIFICATION: given a pair of doc-
uments, determine whether they are written by the same author (2013-2015); AUTHOR-
SHIP OBFUSCATION: given a document and a set of documents from the same author,
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paraphrase the former so that its author cannot be identified anymore (2016-2018); OB-
FUSCATION EVALUATION: devise and implement performance measures that quantify
safeness, soundness, and/or sensibleness of an obfuscation software (2016-2018).

For the next edition, we shall continue working with ‘fanfiction’ [11, 10]. This term
refers to the global phenomenon of non-professional authors taking up the production
of fiction in the tradition of well-known cultural domains, called ‘fandoms’, such as J.K.
Rowling’s Harry Potter or Sherlock Holmes [8]. The abundance of data is a major ad-
vantage, as fanfiction is nowadays estimated to form the fastest growing form of online
writing [3]. Fan writers actively aim to increase their readership and on most platforms
(e.g., archiveofourown.org or fanfiction.net), the bulk of writings can be openly ac-
cessed, although the intellectual rights are not unproblematic [29]. The multilingualism
of the phenomenon is another asset, extending far beyond the Indo-European languages
that are the traditional focus of shared tasks. Finally, fanfiction is characterized by a rel-
ative wealth of author-provided metadata, relating to the textual domain (the fandom),
period of production, and intended audience.

Cross-domain Authorship Verification at PAN’20

In 2020, we shall visit the task of authorship verification again: as opposed to authorship
attribution, which requires a carefully balanced classification setup, authorship verifica-
tion is a more fundamental task. Authorship verification can be formalized as the task
of approximating the target function φ : (Dk, du) → {T, F}, where Dk is a set of
documents of known authorship by the same author and du is a document of questioned
authorship. If φ(Dk, du) = T , then the author of Dk is also the author of du and if
φ(Dk, du) = F , then the author of Dk is not the same with the author of du. In cross-
domain settings, Dk and du do not share topic, genre or even language (in our case the
fandom is different). A simple form of the verification task is to only consider the case
where Dk is singleton, thus only pairs of documents are examined. Given a training set
of such text pairs, verification systems can be trained and calibrated to analyze the au-
thorship of unseen pairs. Such verifiers produce a score in the form of a bounded scalar
between 0 and 1, indicating the probability of the test item being a same-author pair
(rather than a binary choice).

The nature of the relationship between the training set and test set and their exact
composition is crucial to the difficulty of the task. For PAN’20, we shall vary these
along a number of dimensions. (I) The ratio of same-author pairs (SA) over the number
of different-author (DA) pairs: while this ratio is extremely low in real-world settings,
computational systems benefit from under-sampling DAs to achieve a better balance.
(II) Systems are known to be very sensitive to changes in domain and topic: whether
or not train and test pairs are extracted from the same fandom(s) will strongly affect
performance [1]. Including multiple fandoms into training and/or test pairs is another
valuable aspect for experimentation. (III) Overfitting on specific authors is a real danger
during training: allowing authors to contribute more than one text during the construc-
tion of training pairs might affect performance. Likewise, one explicitly can vary the
number of test authors (if any) that have not been encountered in training. (IV) Text
length is another challenge [13]: short documents are more difficult to analyze and text
pairs that significantly differ in length also present an important obstacle.
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We shall extract a number of datasets exploring these aspects from a recent large-
scale crawl from an established fan platform fanfiction.net, that contains over 5.8M sto-
ries, in 44 languages, distributed over about 10,300 fandoms. We intend to apply various
techniques to estimate the degree of topical divergence between individual fandoms.
These estimates will be useful to construct datasets of varying complexity. The large
size of these datasets will be a novel contribution to the state of the art: whereas a larger
number of different authors typically degrades the performance of authorship attribu-
tors [15], the same is not necessarily true for verification systems, that are intrinsically
better suited to learn from a variety of authorial styles [13]. Finally, our aim is to also re-
lease these datasets outside of the strict TIRA environment, in order to further lower the
barrier for experimentation and stimulate the data’s wider adoption in the community.

5 Style Change Detection

The goal of the style change detection task is to identify the text positions within a given
multi-author document at which the author switches, based on an intrinsic style analy-
sis. Detecting these positions is a crucial part of the authorship identification process,
and for multi-author document analysis in general—documents which have not been
studied a lot to date.

This task has been part of PAN since 2016, with varying task definitions, datasets
and evaluation procedures. In 2016, participants were asked to identify and group frag-
ments of a given document that correspond to individual authors [26]. In 2017, we asked
participants to detect whether a given document is multi-authored and if this is indeed
the case, to determine the positions at which authorship changes [28]. However, this
task was deemed as highly complex and hence, was relaxed in 2018, asking partici-
pants to predict whether a given document is single- or multi-authored [11]. Given the
promising results achieved, in 2019, participants were asked to firstly detect whether a
document was single- or multi-authored and, if it was indeed written by multiple au-
thors, to predict the number of authors [32].

Style Change Detection at PAN’20

Given the key role of this task and the progress made in previous years, at PAN’20,
we will continue to advance research in this direction. We aim to steer the task back
to it’s original goal: detecting the exact position of authorship changes. Therefore, the
task for PAN’20 is to find the positions of style changes at the paragraph-level. For each
pair of consecutive paragraphs of a document, we ask participants to estimate whether
there is indeed a style change between those two paragraphs. This binary classification
task will be performed on a dataset curated based on a publicly available dump of a
Q&A platform to cover different types of documents at different lengths and topics.
We will distill two different datasets: one featuring a rather narrow set of topics being
discussed, and a second dataset containing a broad variety of topics. This setup allows
for analyzing the performance of the developed approaches in dimensions of text length,
topics, and the number of contributing authors.
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